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AN ALGEBRAIC SOLUTION OF EINSTEIN’S FIELD

EQUATIONS IN X4

Jong Woo Lee*

Abstract. The main goal in the present paper is to obtain a par-
ticular solution gλµ, Γνλµ and an algebraic solution ḡλµ, Γ̄νλµ by
means of gλµ, Γνλµ in UFT X4.

1. Introduction

Einstein([1]) proposed a new unified field theory that would include
both gravitation and electromagnetism. Hlavatý([6]) gave the mathe-
matical foundation of the Einstein’s unified field theory in a 4-dimensional
generalized Riemannian space X4 (i.e., space-time) for the first time.
Since then this theory had been generalized in a generalized Riemann-
ian manifold Xn, the so-called Einstein’s n-dimensional unified field the-
ory(UFT Xn), and many consequences of this theory has been obtained
by a number of mathematicians. However, it has been unable yet to
represent a general n-dimensional Einstein’s connection in a surveyable
tensorial form, probably due to the complexity of the higher dimensions.
The purpose of the present paper is to obtain a particular solution gλµ,
Γνλµ of Einstein’s field equation in UFT X4. In the next, we shall obtain

an algebraic solution ḡλµ, Γ̄νλµ by means of gλµ, Γνλµ in UFT X4.

2. Preliminary

LetXn be an n-dimensional generalized Riemannian manifold covered
by a system of real coordinate neighborhoods {U; xν}, where, here and
in the sequel, Greek indices run over the range {1, 2, · · · , n} and follow
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the summation convention. The algebraic structure on Xn is imposed
by a basic real non-symmetric tensor gλµ, which may be split into its
symmetric part hλµ and skew-symmetric part kλµ:

(2.1) gλµ = hλµ + kλµ,

where we assume that

(2.2) (a) det((gλµ)) < 0, (b) det((hλµ)) < 0, (c) det((kλµ)) ≥ 0.

Since det((hλµ)) 6= 0, we may define a unique tensor hλν(= hνλ) by

(2.3) hλµh
λν = δνµ.

We use the tensors hλν and hλµ as tensors for raising and/or lowering
indices for all tensors defined on Xn in the usual manner. The manifold
Xn is assumed to be connected by a general real connection Γνλµ which
may also be split into its symmetric part Λνλµ and skew-symmetric part
Sλµ

ν , called the torsion tensor of Γνλµ.

The Einstein’s n-dimensional unified field theory in Xn(UFT Xn) is
governed by the following set of equations :

(2.4) ∂ωgλµ − gαµΓαλω − gλαΓαωµ = 0 (∂ν =
∂

∂xν
),

and

(2.5) (a) Sλ = Sλα
α = 0, (b) R[λµ] = ∂[λPµ], (c) R(λµ) = 0,

where Pµ is an arbitrary vector, called the Einstein’s vector, and Rλµ is
the contracted curvature tensor Rαλµα of the curvature tensor Rωλµν :

(2.6) Rωλµν = ∂µΓωλν − ∂νΓωλµ + ΓαλνΓωαµ − ΓαλµΓωαν .

The equation (2.4) is called the Einstein’s equation, and the solution Γνλµ
of the Einstein’s equation is called an Einstein’s connection. And the
vector Sλ, defined by (2.5)(a), is the called the torsion vector.

The following two theorems were proved by Lee([3]).

Theorem 2.1. In UFT Xn, if the system (2.4) admits a solution Γνλµ
such that its torsion tensor is, for some nonzero vector Yλ,

(2.7) Sλµ
ν =

2

n− 1
δν[λkµ]αY

α + kλµY
ν ,

then it must be of the form

(2.8) Γνλµ = {λνµ}+
2(2− n)

n− 1
k(λ

ν kµ)αY
α +

2

n− 1
δν[λkµ]αY

α + kλµY
ν ,

where {λνµ} are the Christoffel symbols defined by hλµ.
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Theorem 2.2. In UFT Xn, the connection (2.8) is an Einstein’s con-
nection if and only if the vector Yλ defining (2.8) satisfies the following
condition

(2.9) ∇ν kλµ =
2

n− 1
hν[λkµ]αY

α − 2kν[λ Yµ] +
2(n− 2)

n− 1
(2)kν[λ kµ]αY

α,

where ∇ω is the symbolic vector of the covariant derivative with respect
to {λνµ}.

3. A particular solution of field equations in UFT X4

In this section we shall display a particular solution of (2.4) and (2.5)
in UFT X4. Let a tensor gλµ be given by the following matrix :

(3.1) ((gλµ)) =


1 0 −et et

0 1 0 0
et 0 1 0
−et 0 0 −1

 ,

where t = x3 − x4, which may be split into its symmetric part hλµ and
skew-symmetric part kλµ given by the following matrices :

(3.2) ((hλµ)) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

(3.3) ((kλµ)) =


0 0 −et et

0 0 0 0
et 0 0 0
−et 0 0 0

 .

Since

(3.4) (a) det((gλµ)) = −1, (b) det((hλµ)) = −1, (c) det((kλµ)) = 0,

we can choose the tensor gλµ given by (3.1) as a basic tensor in UFT
X4, by the assumption (2.2). On the other hand, in virtue of (3.2), all
the Christoffel symbols {λνµ} vanish. Hence the components of the first
covariant derivatives with respect to {λνµ} are ordinary derivatives, and
Hω
λµν = 0. Define two vectors by

(3.5) (a) Aλ : (0, 0, 1,−1), (b) Bλ : (et, 0, 0, 0).
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Then the skew-symmetric part kλµ satisfies the following relation :

(3.6) kλµ = 2A[λBµ].

Furthermore, making use of (3.2) and (3.5), we obtain

(3.7) (a) Aλ(= hλνAν) : (0, 0, 1, 1), (b) Bλ(= hλνBν) : (et, 0, 0, 0),

and

(a) AαA
α = 0, (b) AαB

α = 0, (c) kλαA
α = 0,

(d) ∇λAµ = 0, (e) ∇ω Bµ = AωBµ.
(3.8)

Theorem 3.1. In UFT X4, the vector Aλ given by (3.5)(a) is a
solution of the condition (2.9). In this case, the corresponding Einstein
connection may be given by

(3.9) Γνλµ = 2A[λBµ]A
ν .

And its curvature tensor Rωλµν may be given by

(3.10) Rωλµν = 2AλA[µBν]A
ω,

Proof. Substituting the vector Aλ into the condition (2.9), the vector
Aλ is a solution of the condition (2.9) iff, in virtue of (3.8)(c),

(3.11) ∇ν kλµ = −2kν[λAµ].

But, making use of (3.6), (3.8)(d) and (3.8)(e),

(3.12) ∇ν kλµ = AλAνBµ −AµAνBλ = −2kν[λAµ],

which implies that the vector Aλ is a solution of the condition (2.9).
Substituting the vector Aλ into (2.8), making use (3.6) and (3.8)(c),
and remembering {λνµ} = 0, we obtain an Einstein connection (3.9).
Substituting the Einstein connection (3.9) into (2.6), we obtain (3.10)
by a straightforward computation.

Conclusion. In virtue of Theorem 3.1, if UFT X4 is endowed with the
basic tensor gλµ given by (3.1), then an Einstein connection Γνλµ is given

by (3.9), which satisfy (2.5)(a). In the next, since the contracted curva-
ture tensor Rλµ with respect to the connection (3.9) is given by Rλµ = 0,
in virtue of (3.10), the field equation (2.5)(c) is satisfied automatically.
And since the field equation (2.5)(b) is equivalent to ∂[λPµ] = 0, the field
equation (2.5)(b) is satisfied by a vector Pµ = ∂µP , that is, the vector
Pµ = ∂µP is an Einstein’s vector.
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4. An algebraic solution of field equations in UFT X4

Assume that we have a particular solution gλµ, Γνλµ of (2.4) and (2.5).
The question arises whether there exist a tensor ḡλµ which together with
the Γ̄νλµ is a solution of (2.4) and (2.5). In order to answer this question
we put ḡλµ in the form

(4.1) ḡλµ = gλµ +Xλµ

where the tensor Xλµ has to be founded. From now on, we shall hold to
the following agreement : If T is a function of gλµ, then we denote by T̄
the same function of ḡλµ. If, in particular, T is a tensor, so is T̄ . From
(4.1), we obtain

(4.2) (a) h̄λµ = hλµ + pλµ (b) k̄λµ = kλµ + qλµ,

where pλµ and qλµ are the symmetric part and the skew-symmetric part
of the tensor Xλµ, respectively. And we assume that det((h̄λµ)) 6= 0. we

may define a unique tensor h̄λν(= h̄νλ) by

(4.3) h̄λµh̄
λν = δνµ.

Theorem 4.1. If we put

(4.4) {λων} = {λων}+ Pωλν ,

then Pωλν is a tensor symmetric in the indices λ and ν, and it is given by

(4.5) P νλµ =
1

2
h̄να(∇λ pµα +∇µ pαλ −∇α pλµ).

Proof. By the law of transformation of the Christoffel symbols, P νλµ =

{λων} − {λων} is a tensor symmetric in the indices λ and ν. Multiply-
ing by h̄ωµ and summing for ω on both sides of (4.4), and using the
expression (4.2)(a) in the right-hand member of (4.4), we obtain

(4.6) [λν, µ] = [λν, µ] + pµα{λαν}+ h̄µαP
α
λν .

In accordance with the definition of the Christoffel symbols we have,
from (4.2)(a),

(4.7) [λν, µ] = [λν, µ] + [λν, µ]p,

where [λν, µ]p are the Christoffel symbols of the first kind formed with
respect to pλν . Substituting (4.7) into (4.6), we obtain

(4.8) [λν, µ]p = pµα{λαν}+ h̄µαP
α
λν .
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If we add to this equation the one obtained by interchanging λ and µ,
then the result may be written

(4.9) ∇ν pλµ = h̄µαP
α
λν + h̄λαP

α
µν .

Subtracting this equation from the sum of the two others which are
obtained from it by cyclic permutation of the indices λ, µ and ν, we
obtain (4.5).

In order to obtain an algebraic solution ḡλµ, Γ̄νλµ by means of a par-

ticular solution gλµ, Γνλµ of (2.4) and (2.5), where gλµ and Γνλµ are given

by (3.1) and (3.8), let us consider a tensor ḡλµ given by the following
matrix :

(4.10) ((ḡλµ)) =


1 0 0 0
0 1 0 0

2et 0 1 0
−2et 0 0 −1

 ,

where t = x3 − x4. The tensor ḡλµ may be split into its symmetric part
h̄λµ and skew-symmetric part k̄λµ given by the following matrices :

(4.11) ((h̄λµ)) =


1 0 et −et
0 1 0 0
et 0 1 0
−et 0 0 −1

 .

(4.12) ((k̄λµ)) =


0 0 −et et

0 0 0 0
et 0 0 0
−et 0 0 0

 .

Hence the tensor h̄λµ may be split into hλµ and pλµ given by the following
matrices :

(4.13) ((hλµ)) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

(4.14) ((pλµ)) =


0 0 et −et
0 0 0 0
et 0 0 0
−et 0 0 0

 .
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Hence we obtain

(4.15) (a) h̄λµ = hλµ + pλµ (b) qλµ = 0, (c) k̄λµ = kλµ(= 2A[λBµ]).

Since

(4.16) (a) det((ḡλµ)) = −1, (b) det((h̄λµ)) = −1, (c) det((k̄λµ)) = 0,

we can choose the tensor ḡλµ given by (4.10) as a basic tensor in UFT
X4, by the assumption (2.2).

Theorem 4.2. In UFT X4, for the vectors Aλ and Bλ given by (3.5),
the following relations hold.

(a) pλµ = 2A(λBµ) (b) pλαA
α = 0, (c) pλαB

α = AλBαB
α,

(d) Aαh̄
αν = Aν , (e) Bαh̄

αν = Bν −AνBβBβ

(f) P νλµ = AλAµ(Bν −AνBβBβ)

(4.17)

Proof. A simple inspection based on (3.6), (3.8) and (4.15) shows
(4.17)(a)∼(d). From (4.15) and (4.17)(c), we obtain

(4.18) h̄λαB
α = Bλ +AλBαB

α

Multiplying h̄λβ on both sides of (4.18) and summing for λ, we obtain

(4.19) Bβ = h̄λβBλ +AβBαB
α,

which implies (4,17)(e). Next, substituting (4.17)(a) in (4.5), and mak-
ing use of (3.8) and (4,17)(e), obtain

(4.20) P νλµ = h̄ναAµAλBα = AλAµ(Bν −AνBβBβ).

Theorem 4.3. In UFT X4, let gλµ and Γνλµ be given by (3.1) and

(3.9), respectively. For the basic tensor ḡλµ given by (4.10), let Γ
ν
λµ be a

connection with the same torsion tensor as Γνλµ. Then Γ
ν
λµ is an Einstein

connection which is given by

(4.21) Γ
ν
λµ = 2A[λBµ]A

ν +AλAµ(Bν −AνBβBβ).

And its curvature tensor R
ω
λµν may be given by

(4.22) R
ω
λµν = 2AλA[µBν]A

ω.

Proof. Since Γ
ν
λµ is a connection with the same torsion tensor as Γνλµ,

(4.23) S
ν
λµ = kλµA

ν = 2A[λBµ]A
ν .
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Hence, in virtue of Theorem 2.1, and making use of (3.8)(c), (4.4), (4.5)
and (4.20), and remembering {λνµ} = 0, the connection Γ

ν
λµ may be

given by

(4.24) Γ
ν
λµ = {λνµ}+ kλµA

ν = AλAµ(Bν −AνBβBβ) + 2A[λBµ]A
ν .

And, in virtue of Theorem 2.2, this connection (4.24) is an Einstein
connection if and only if, making use of (3.8)(c),

(4.25) ∇ν kλµ = −2kν[λAµ]

But since, making use of (4.17)(f), (3.6) and (3.8),

∇ν kλµ = ∂νkλµ − kαµ{λαν} − kλα{µαν}
= ∂νkλµ − kαµPαλν − kλαPαµν
= ∂ν kλµ = ∇ν kλµ = −2kν[λAµ],

(4.26)

the connection (4.21) is an Einstein connection which satisfies (2.4).
Next Substituting (4.21) into the curvature tensor :

(4.27) R
ω
λµν = ∂µΓ

ω
λν − ∂νΓ

ω
λµ + Γ

α
λνΓ

ω
αµ − Γ

α
λµΓ

ω
αν ,

we obtain (4.22), by a straightforward computation.

Conclusion. In virtue of Theorem 4.3, if UFT X4 is endowed with the
basic tensor ḡλµ given by (4.10), then an Einstein connection Γ

ν
λµ is given

by (4.21), which satisfy (2.5)(a). Furthermore, since from (4.22), the
contracted curvature tensor Rλµ with respect to the connection (4.21) is

given by Rλµ = 0, the field equation (2.5)(c) is satisfied automatically.
On the other hand, since the field equation (2.5)(b) is equivalent to
∂[λPµ] = 0, the field equation (2.5)(b) is satisfied by a vector Pµ = ∂µP ,
that is, the vector Pµ = ∂µP is an Einstein’s vector. Consequently,
for a particular solution gλµ, Γνλµ of (2.4) and (2.5), ḡλµ is an algebraic

solution which together with the Γ
ν
λµ is a solution of (2.4) and (2.5).
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