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AN ALGEBRAIC SOLUTION OF EINSTEIN’S FIELD
EQUATIONS IN X,

Jone Woo LEE*

ABSTRACT. The main goal in the present paper is to obtain a par-
ticular solution gx,, I'j, and an algebraic solution gx,, I'5, by
means of gx,, Iy, in UFT Xj.

1. Introduction

Einstein([1]) proposed a new unified field theory that would include
both gravitation and electromagnetism. Hlavaty([6]) gave the mathe-
matical foundation of the Einstein’s unified field theory in a 4-dimensional
generalized Riemannian space X, (i.e., space-time) for the first time.
Since then this theory had been generalized in a generalized Riemann-
ian manifold X,,, the so-called Finstein’s n-dimensional unified field the-
ory(UFT X,,), and many consequences of this theory has been obtained
by a number of mathematicians. However, it has been unable yet to
represent a general n-dimensional Einstein’s connection in a surveyable
tensorial form, probably due to the complexity of the higher dimensions.
The purpose of the present paper is to obtain a particular solution gy,
T K“ of Finstein’s field equation in UFT X,. In the next, we shall obtain

an algebraic solution gy, fKu by means of gy, I‘K# in UFT X4.

2. Preliminary

Let X,, be an n-dimensional generalized Riemannian manifold covered
by a system of real coordinate neighborhoods {U; "}, where, here and
in the sequel, Greek indices run over the range {1,2,--- ,n} and follow
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the summation convention. The algebraic structure on X, is imposed
by a basic real non-symmetric tensor g,,, which may be split into its
symmetric part hy, and skew-symmetric part ky,:

(2.1) I = P+ g,

where we assume that

(2.2)  (a) det((gan)) <0, (b) det((hr)) <0, (c) det((kxy)) > 0.
Since det((hy,)) # 0, we may define a unique tensor N (= k) by
(2.3) hauh™ = o,

We use the tensors b and hy, as tensors for raising and/or lowering
indices for all tensors defined on X, in the usual manner. The manifold
X, is assumed to be connected by a general real connection FKM which
may also be split into its symmetric part A L and skew-symmetric part
Sxu”, called the torsion tensor of I‘KM.

The FEinstein’s n-dimensional unified field theory in X,(UFT X,,) is
governed by the following set of equations :

0
= axl/)7

(24) awg)\u - gauFf\“w - g,\aFgu =0 (61,
and

(2.5) (a) Sx=8x"=0, (b) Ry =0pPy, (c) Ry =0,
where P, is an arbitrary vector, called the Einstein’s vector, and R),, is

the contracted curvature tensor R‘j\‘# o of the curvature tensor R‘/‘\’W :

(26) L){\Juu = aﬂro/{u - 8VF05\)M + F())\[l/ Lt;u - ())\éu gu'

The equation (2.4) is called the Finstein’s equation, and the solution I'{ u
of the Einstein’s equation is called an Einstein’s connection. And the
vector Sy, defined by (2.5)(a), is the called the torsion vector.

The following two theorems were proved by Lee([3]).

THEOREM 2.1. In UFT X, if the system (2.4) admits a solution I'§ ,
such that its torsion tensor is, for some nonzero vector Yy,

2
(27) S)\MV — méfi\k’“]aya + k‘)\uyy,
then it must be of the form
2(2—n)

14 14 v (0% 2 v (0% v
(2.8) FAM:{)\ !L}+ " k‘()\ ku)aY +m [/\/i'u]ay + kY'Y,

where {,",} are the Christoffel symbols defined by hy,,.
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THEOREM 2.2. In UF'T X, the connection (2.8) is an Einstein’s con-
nection if and only if the vector Yy defining (2.8) satisfies the following
condition

(2.9) V. k)\“ = mhu[)\ky}aya — 2/‘&1,[)\ Y#] + k‘l,[)\ ku}aya,

n—1
where V, is the symbolic vector of the covariant derivative with respect
to {/\Vu}'

3. A particular solution of field equations in UFT X,

In this section we shall display a particular solution of (2.4) and (2.5)
in UFT X4. Let a tensor gy, be given by the following matrix :

1 0 —et €
0O 1 0 0

(31) ((g)\u)) - €t 0 1 0 )
-t 0 0 -1

where t = 23 — 2%, which may be split into its symmetric part h Ap and

skew-symmetric part ky, given by the following matrices :

1 0 0 O
010 O
0 00 -1
0 0 —e e
0O 0 O 0
(33) ((k)\,u» = et 0 0 0
-t 0 0 0

Since

(34) (a) det((gan)) = =1, (b) det((ha)) = =1, (c) det((kxu)) =0,

we can choose the tensor gy, given by (3.1) as a basic tensor in UFT
X4, by the assumption (2.2). On the other hand, in virtue of (3.2), all
the Christoffel symbols {)”,,} vanish. Hence the components of the first
covariant derivatives with respect to {\”,} are ordinary derivatives, and

H;‘\’W = 0. Define two vectors by

(3.5) (a) Ay :(0,0,1,—1), (b) By : (¢",0,0,0).
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Then the skew-symmetric part k), satisfies the following relation :

(3.6) kau = 2ApB,.

Furthermore, making use of (3.2) and (3.5), we obtain
(37) (CL) A)\(: hAVAl/) : (07 07 17 1)7 (b) B/\(: hAVBV) : (eta 07 Oa O)a
and

(a) AgA“ =0, (b) AuB* =0, (c)krxaA® =0,

3.8
(38) (d) VyA, =0, (e) Vy,B,=A,B,.

THEOREM 3.1. In UFT X4, the vector Ay given by (3.5)(a) is a
solution of the condition (2.9). In this case, the corresponding Einstein
connection may be given by

(3.9) IS, = 24ApByA”.
And its curvature tensor R“;W may be given by
(3.10) R3,,, = 2A\A|, B, AY,

Proof. Substituting the vector Ay into the condition (2.9), the vector
A, is a solution of the condition (2.9) iff, in virtue of (3.8)(c),

(3.11) Vb = =2k, \ Ay
But, making use of (3.6), (3.8)(d) and (3.8)(e),
(3.12) Vi kg = ANALBy — ApAy By = =2k, [\ Ay,

which implies that the vector Ay is a solution of the condition (2.9).
Substituting the vector Ay into (2.8), making use (3.6) and (3.8)(c),
and remembering {,”,} = 0, we obtain an Einstein connection (3.9).
Substituting the Einstein connection (3.9) into (2.6), we obtain (3.10)
by a straightforward computation. O

Conclusion. In virtue of Theorem 3.1, if UFT X4 is endowed with the
basic tensor gy, given by (3.1), then an Einstein connection I'§ , is given
by (3.9), which satisfy (2.5)(a). In the next, since the contracted curva-
ture tensor Ry, with respect to the connection (3.9) is given by Ry, = 0,
in virtue of (3.10), the field equation (2.5)(c) is satisfied automatically.
And since the field equation (2.5)(b) is equivalent to 9, P, = 0, the field
equation (2.5)(b) is satisfied by a vector P, = 0, P, that is, the vector
P, = 0,P is an Einstein’s vector.
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4. An algebraic solution of field equations in UFT X,

Assume that we have a particular solution gy, I'{ , of (2.4) and (2.5).
The question arises whether there exist a tensor gy, which together with
the f‘K# is a solution of (2.4) and (2.5). In order to answer this question
we put gy, in the form

(4'1) I = G T X)\u

where the tensor X, has to be founded. From now on, we shall hold to
the following agreement : If 7" is a function of g, then we denote by T
the same function of gy,. If, in particular, T" is a tensor, so is T". From
(4.1), we obtain

(4'2) (CL) }_U\u = h)\u + Dap (b) ]})\u = k)\u + D

where py,, and gy, are the symmetric part and the skew-symmetric part
of the tensor X, respectively. And we assume that det((hy,)) # 0. we
may define a unique tensor h* (= h**) by
(4.3) hauh™ = o,

THEOREM 4.1. If we put

(4.4) D@t =) + P,

then Py, is a tensor symmetric in the indices A and v, and it is given by

1=
(45) P),\/H = ih’/a(v)\pua + V'u Par — Va p/\u).

Proof. By the law of transformation of the Christoffel symbols, Py W=

@0} = {\“,} is a tensor symmetric in the indices A and v. Multiply-
ing by hy, and summing for w on both sides of (4.4), and using the
expression (4.2)(a) in the right-hand member of (4.4), we obtain

(4.6) v, p1] = (A, i) + pua {00} + hua P

In accordance with the definition of the Christoffel symbols we have,
from (4.2)(a),

(4.7) v, ] = [Av, p] + [, plp,

where [Av, p], are the Christoffel symbols of the first kind formed with
respect to py,. Substituting (4.7) into (4.6), we obtain

(4.8) (A, plp = Puafa®v} + Euap)?u-
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If we add to this equation the one obtained by interchanging A and u,
then the result may be written

(49) \ Pxp = B,u,ap)?éy + B)\Oép;fy'

Subtracting this equation from the sum of the two others which are
obtained from it by cyclic permutation of the indices A, p and v, we
obtain (4.5). O

In order to obtain an algebraic solution gy, f’; u by means of a par-
ticular solution gy, I'y , of (2.4) and (2.5), where gy, and I'§ , are given

by (3.1) and (3.8), let us consider a tensor g, given by the following
matrix :

1 00 O
_ 0 1 0 O

(410) ((g)\,lt)) - 2€t 01 0 )
—2t 0 0 —1

3

where ¢ = 23 — 2*. The tensor g, may be split into its symmetric part

B/\u and skew-symmetric part ky, given by the following matrices :

1 0 e —¢

- 0 1 0 0
-t 0 0 -1
0 0 —et ¢

= 0O 0 O 0
-t 0 0 0

Hence the tensor h Ap Mmay be split into hy, and py, given by the following
matrices :

1 0 0 O
010 0
0 0 0 -1
0 0 e —¢
O 0 0 O
(414) ((pm)) - et 0 0 0
-t 0 0 0
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Hence we obtain

(4.15) (a) BA;L =hytoa (0) =0, (o) %M = kau(= 24pBy).
Since

(4.16) (a) det((ga) = 1. (8) det((hr,) = =1, (¢) det((Rxu)) = O,

we can choose the tensor gy, given by (4.10) as a basic tensor in UFT
X4, by the assumption (2.2).

THEOREM 4.2. In UFT X, for the vectors Ay and B) given by (3.5),
the following relations hold.

(@) pap = 2A0\Byy (D) praA® =0, (¢) praB® = A\BaB*,
(4.17) (d) Agh®” =AY, (e) Boh™ = BY — AY BB’

(f) P, = A\Au(B” — A”BgB")

Proof. A simple inspection based on (3.6), (3.8) and (4.15) shows

(4.17)(a)~(d). From (4.15) and (4.17)(c), we obtain
(4.18) haa B* = By + A\B,B*
Multiplying h*® on both sides of (4.18) and summing for A, we obtain
(4.19) B? = W¥By + A’B,B°,

which implies (4,17)(e). Next, substituting (4.17)(a) in (4.5), and mak-
ing use of (3.8) and (4,17)(e), obtain

(4.20) PY, = h"*A A\Bo = AyA, (B — A”BgBP).
O

THEOREM 4.3. In UFT Xy, let gy, and T'§ be given by (3.1) and
(3.9), respectively. For the basic tensor gy, given by (4.10), let f/y\u be a

. . . =Y . . .
connection with the same torsion tensor asI' . Then T’y , is an Einstein
connection which is given by

(4.21) T, =24 B, A" + A\A,(B” — AYByBP).
And its curvature tensor EU/\JW may be given by
(4.22) R}, = 2A,A,B, A
Proof. Since f;u is a connection with the same torsion tensor as I'§ ,
(4.23) Sy = kapA” = 2A,B, AV,
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Hence, in virtue of Theorem 2.1, and making use of (3.8)(c), (4.4), (4.5)
and (4.20), and remembering {)\",} = 0, the connection FK# may be
given by

(4.24) Th, = {\u} + kapAY = A\Au(B” — A”BgBP) + 24, B, A”.
And, in virtue of Theorem 2.2, this connection (4.24) is an Einstein
connection if and only if, making use of (3.8)(c),

(4.25) Vo kay = =2k, 5 Ay
But since, making use of (4.17)(f), (3.6) and (3.8),
P ko = Ok — kaum - kmm
(4.26) = vk — kapPyy, — kaa Py,
= Oy kau = Vi kay = =2k, Ay,

the connection (4.21) is an Einstein connection which satisfies (2.4).
Next Substituting (4.21) into the curvature tensor :

(427) Eg\};w = 8Mfu)fu - al/ft)‘\)u + f?\éufz,u - fiufzw
we obtain (4.22), by a straightforward computation. O

Conclusion. In virtue of Theorem 4.3, if UFT X} is endowed with the
basic tensor gy, given by (4.10), then an Einstein connection Ty . is given
by (4.21), which satisfy (2.5)(a). Furthermore, since from (4.22), the

contracted curvature tensor Ry, with respect to the connection (4.21) is
given by Ry, = 0, the field equation (2.5)(c) is satisfied automatically.
On the other hand, since the field equation (2.5)(b) is equivalent to
P, = 0, the field equation (2.5)(b) is satisfied by a vector P, = J,P,
that is, the vector P, = 0,P is an Einstein’s vector. Consequently,
for a particular solution gy,, I}, of (2.4) and (2.5), gy, is an algebraic

solution which together with the fzﬂ is a solution of (2.4) and (2.5).
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