• Title/Summary/Keyword: sub-modeling

Search Result 880, Processing Time 0.022 seconds

Topological Modeling using Sonar Grid Map (초음파 격자 지도를 이용한 위상학적 지도 작성 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • This paper presents a method of topological modeling using only low-cost sonar sensors. The proposed method constructs a topological model by extracting sub-regions from the local grid map. The extracted sub-regions are considered as nodes in the topological model, and the corresponding edges are generated according to the connectivity between two sub-regions. A grid confidence for each occupied grid is evaluated to obtain reliable regions in the local grid map by filtering out noisy data. Moreover, a convexity measure is used to extract sub-regions automatically. Through these processes, the topological model is constructed without predefining the number of sub-regions in advance and the proposed method guarantees the convexity of extracted sub-regions. Unlike previous topological modeling methods which are appropriate to the corridor-like environment, the proposed method can give a reliable topological modeling in a home environment even under the noisy sonar data. The performance of the proposed method is verified by experimental results in a real home environment.

Comprehensive study of components affecting extrinsic transconductance in In0.7Ga0.3As quantum-well high-electron-mobility transistors for image sensor applications (이미지 센서 적용을 위한 In0.7Ga0.3As QW HEMT 소자의 extrinsic trans-conductance에 영향을 미치는 성분들의 포괄적 연구)

  • Yun, Seung-Won;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.441-445
    • /
    • 2021
  • The components affecting the extrinsic transconductance (gm_ext) in In0.7Ga0.3As quantum-well (QW) high-electron-mobility transistors (HEMTs) on an InP substrate were investigated. First, comprehensive modeling, which only requires physical parameters, was used to explain both the intrinsic transconductance (gm_int) and the gm_ext of the devices. Two types of In0.7Ga0.3As QW HEMT were fabricated with gate lengths ranging from 10 ㎛ to sub-100 nm. These measured results were correlated with the modeling to describe the device behavior using analytical expressions. To study the effects of the components affecting gm_int, the proposed approach was extended to projection by changing the values of physical parameters, such as series resistances (RS and RD), apparent mobility (𝜇n_app), and saturation velocity (𝜈sat).

Solubility of Trivalent Am, Eu, and Sm in the Synthetic KAERI Underground Research Tunnel Groundwater

  • Hee-Kyung Kim;Hye-Ryun Cho;Wansik Cha
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.237-249
    • /
    • 2024
  • The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (SynDB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.

C12-SPACE FORMS

  • Gherici Beldjilali;Nour Oubbiche
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.629-641
    • /
    • 2023
  • The aim of this paper is two-fold. First, we study the Chinea-Gonzalez class C12 of almost contact metric manifolds and we discuss some fundamental properties. We show there is a one-to-one correspondence between C12 and Kählerian structures. Secondly, we give some basic results for Riemannian curvature tensor of C12-manifolds and then establish equivalent relations among 𝜑-sectional curvature. Concrete examples are given.

General SPICE Modeling Procedure for Double-Gate Tunnel Field-Effect Transistors

  • Najam, Syed Faraz;Tan, Michael Loong Peng;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.115-121
    • /
    • 2016
  • Currently there is a lack of literature on SPICE-level models of double-gate (DG) tunnel field-effect transistors (TFETs). A DG TFET compact model is presented in this work that is used to develop a SPICE model for DG TFETs implemented with Verilog-A language. The compact modeling approach presented in this work integrates several issues in previously published compact models including ambiguity about the use of tunneling parameters Ak and Bk, and the use of a universal equation for calculating the surface potential of DG TFETs in all regimes of operation to deliver a general SPICE modeling procedure for DG TFETs. The SPICE model of DG TFET captures the drain current-gate voltage (Ids-Vgs) characteristics of DG TFET reasonably well and offers a definite computational advantage over TCAD. The general SPICE modeling procedure presented here could be used to develop SPICE models for any combination of structural parameters of DG TFETs.

A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence (인공지능 기반 온실 환경인자의 시간영역 추정)

  • Lee, JungKyu;Oh, JongWoo;Cho, YongJin;Lee, Donghoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.277-284
    • /
    • 2020
  • To increase the utilization of the intelligent methodology of smart farm management, estimation modeling techniques are required to assess prior examination of crops and environment changes in realtime. A mandatory environmental factor such as CO2 is challenging to establish a reliable estimation model in time domain accounted for indoor agricultural facilities where various correlated variables are highly coupled. Thus, this study was conducted to develop an artificial neural network for reducing time complexity by using environmental information distributed in adjacent areas from a time perspective as input and output variables as CO2. The environmental factors in the smart farm were continuously measured using measuring devices that integrated sensors through experiments. Modeling 1 predicted by the mean data of the experiment period and modeling 2 predicted by the day-to-day data were constructed to predict the correlation of CO2. Modeling 2 predicted by the previous day's data learning performed better than Modeling 1 predicted by the 60-day average value. Until 30 days, most of them showed a coefficient of determination between 0.70 and 0.88, and Model 2 was about 0.05 higher. However, after 30 days, the modeling coefficients of both models showed low values below 0.50. According to the modeling approach, comparing and analyzing the values of the determinants showed that data from adjacent time zones were relatively high performance at points requiring prediction rather than a fixed neural network model.

Nonlinear Analysis of End-to-End Anastomosis Using Sub-modeling (Sub-modeling을 이용한 end-to-end 문합의 비선형 해석)

  • 한근조;안성찬;심재준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.192-198
    • /
    • 2003
  • A finite element analysis of end-to-end artery/PTFE anastomosis has been presented in this study to evaluate the distribution of compliance and stresses in the vicinity of the anastomosis due to any mismatch in compliance characteristics. The artery wall was assumed to be made of linear isotropic material in this simplified model and a nonlinear analysis and convergency study with respect to increasing meshed element numbers were performed with a mean artery pressure loading of the artery-PTFE model. Also, sub-modeling method was Introduced to progress the accuracy of the finite element analysis. The results are as follow : 1. A hypercompliant zone on the artery side was observed around 4.Omm from the anastomosis and a high hoop stresses in the wall of artery and PTFE was dominant. 2. An artery displays large deformation so that nonlinear analysis and sub-modeling method was used. 3. An anastomosis with the thinner thickness and larger diameter PTFE (B type) could reduce the compliance disagreement.

Modeling of SO2 Distributions in the Seoul Area by Using ISCLT (ISCLT에 의한 서울지역의 SO2 오염도 조사)

  • Ghim, Young-Sung;Son, Jae-Ek
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.128-137
    • /
    • 1992
  • Sulfur dioxide distributions in the Seoul area in 1988 were reproduced by using ISCLT which was the most versatile model among the preferred models recommended by USEPA. Modeling was performed season by season in order to take into account distinct four seasons in Korea. Predicted concentrations were close to the observed ones in most regions, but were different from the observed ones in such regions where the effect of sources outside the Seoul area was important. For better results of the modeling, the modeling domain should be chosen after a careful examination of principal wind directions.

  • PDF

Thermodynamics of Se(IV) Sorption Onto Ca-type Bentonil-WRK Montmorillonite

  • Seonggyu Choi;Ja-Young Goo;Jeonghwan Hwang;Yongheum Jo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • Se sorption onto Ca-type montmorillonite purified from Bentonil-WRK-a new research bentonite introduced by Korea Atomic Energy Research Institute-was examined under ambient conditions (pH 4-9, pe 7-9, I = 0.01 M CaCl2, and T = 25℃). Se(IV) was identified as the oxidation state responsible for weak sorption (Kd < 22 L·kg-1) by forming surface complexes with edge functional groups of the montmorillonite. Thermodynamic modeling, considering reaction mechanisms of outer-sphere complexation (≡AlOH+2 + HSeO3- ⇌ ≡AlOH3SeO3, log K = 0.50 ± 0.21), inner-sphere complexation (2≡AlOH + H2SeO3(aq) ⇌ (≡Al)2SeO3 + 2H2O(l), log K = 7.89 ± 0.51), and Ca2+-involved ternary complexation (≡AlOH + Ca2+ + SeO32- ⇌ ≡AlOHCaSeO3, log K = 7.69 ± 0.28) between selenite and aluminol sites of montmorillonite, acceptably reproduced the batch sorption data. Outer- and inner-sphere complexes are predominant Se(IV) forms sorbed in acidic (pH ≈ 4) and near-acidic (pH ≈ 6) regions, respectively, whereas ternary complexation accounts for Se(IV) sorption at neutral pHs under the ambient conditions. The experimental and modeling data generally extend a material-specific sorption database of Bentonil-WRK, which is essential for assessing its radionuclide retention performance as a buffer candidate of deep geological disposal system for high-level radioactive waste.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.