DOI QR코드

DOI QR Code

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M. (Department of Civil Engineering, Faculty of Engineering, Fayoum University) ;
  • Osman, Ahmed O. (Department of Civil Engineering, Faculty of Engineering, Fayoum University) ;
  • EL-Sayed, Alaa A. (Department of Civil Engineering, Faculty of Engineering, Fayoum University)
  • Received : 2020.08.12
  • Accepted : 2022.03.21
  • Published : 2022.04.25

Abstract

Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Keywords

References

  1. Abdul Halim, N.H.F., Alih S.C. and Vafaei, M. (2021), "Seismic behavior of RC columns internally confined by CFRP strips", Adv. Concrete Constr., 12(3), 217-225. https://doi.org/10.12989/acc.2021.12.3.217.
  2. ACI Committee 318 (2014), ACI 318-14 Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  3. Al-Nimry, H. and Neqresh, M. (2019), "Confinement effects of unidirectional CFRP sheets on axial and bending capacities of square RC columns", Eng. Struct., 196, 109329. https://doi.org/10.1016/j.engstruct.2019.109329.
  4. Al-Nimry, H. and Soman, A. (2018), "On the slenderness and FRP confinement of eccentrically-loaded circular RC columns", Eng. Struct., 164, 92-108. https://doi.org/10.1016/j.engstruct.2018.02.086.
  5. ANSYS, Inc. (2011), ANSYS Structural Analysis Guide-Release 14, SAS IP, Inc., Southpointe, Canonsburg, PA, USA.
  6. Bai, Y., Dai, J. and Teng, J.G. (2017), "Buckling of steel reinforcing bars in FRP-confined RC columns: An experimental study", Constr. Build. Mater., 140, 403-415. http://doi.org/10.1016/j.conbuildmat.2017.02.149.
  7. Berradia, M. and Kassoul, A. (2017), "Combined effect of CFRP-TSR confinement on circular reinforced concrete columns", Comput. Concrete, 19(1), 41-49. https://doi.org/10.12989/cac.2017.19.1.041.
  8. Chotickai, P., Tongya, P. and Jantharaksa, S. (2021), "Performance of corroded rectangular RC columns strengthened with CFRP composite under eccentric loading", Constr. Build. Mater., 268, 121134. https://doi.org/10.1016/j.conbuildmat.2020.121134.
  9. Dogan, A.B. and Anil, O . (2010), "Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface", Comput. Concete, 7(5), 437-453. http://sdx.doi.org/10.12989/cac.2010.7.5.437.
  10. Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A. and Kontoni, D.N. (2021), "Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps", Comput. Concrete, 28(2), 137-147. https://doi.org/10.12989/cac.2021.28.2.137.
  11. Egyptian Code Committee (2017), Egyptian Code for Design and Construction of Concrete Structures (Code N 203-Ministerial Decision 712/2017), Housing and Building National Research Center (HBRC), Dokki, Giza, Egypt.
  12. El Maaddawy, T. (2009), "Strengthening of eccentrically loaded reinforced concrete columns with fiber-reinforced polymer wrapping system: Experimental investigation and analytical modeling", J. Compos. Constr., 13, 13-24. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(13).
  13. EL-Kholy, A.M. (2020), "ANSYS-Contact with thickness OR offset included", Data File, ResearchGate. http://doi.org/10.13140/RG.2.2.28968.52484.
  14. El-Kholy, A.M. (2020), "ANSYS-Contact element normals", Data File, ResearchGate. http://doi.org/10.13140/RG.2.2.22257.63847.
  15. EL-Kholy, A.M., Abd El-Mola, S., Abd El-Aziz, M.A. and Shaheen, A.A., (2018), "Effectiveness of combined confinement with metal meshes and ties for preloaded and post-heated RC short columns", Arab. J. Sci. Eng., 43, 1875-1891. https://doi.org/10.1007/s13369-017-2782-x.
  16. El-kholy, A.M., Masaoud, M.M. and Abd El-Aziz, M.A. (2019), "Enhanced ferrocement jackets for strengthening long reinforced columns", Int. J. Civ. Eng. Tech., 10(8), 61-72.
  17. EL-Kholy, A.M., Mourad, S.A., Shaheen, A.A. and Mohamed, Y.A. (2019), "Finite element simulation for steel tubular members strengthened with FRP under compression", Struct. Eng. Mech., 72(5), 569-583. https://doi.org/10.12989/sem.2019.72.5.569.
  18. Elwan, S.K. and Rashed, A.S. (2011), "Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping", Struct. Eng. Mech., 39(2), 207-221. http://doi.org/10.12989/sem.2011.39.2.207.
  19. Etman, E.E. (2010), "Experimental study on the behavior of slender rectangular columns under eccentric loading", Concrete Res. Lett., 1(2), 45-59.
  20. Ferrotto, M.F., Cavaleri, L. and Di Trapani, F. (2018), "FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model", Comput. Concrete, 22(2), 143-152. https://doi.org/10.12989/cac.2018.22.2.143.
  21. Gajdosova, K. and Bilcik, J. (2013), "Full-scale testing of CFRPstrengthened slender reinforced concrete columns", J. Compos. Constr., 17, 239-248. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000329.
  22. Guler, S., C opur, A. and Aydogan, M. (2013), "Nonlinear finite element modeling of FRP-wrapped UHPC columns", Comput. Concrete, 12(4), 413-429. http://doi.org/10.12989/cac.2013.12.4.413.
  23. Gurunandan, M. and Raghavendra, T. (2021), "Novel NSM configuration for RC column strengthening-A numerical study", Comput. Concrete, 27(5), 437-445. https://doi.org/10.12989/cac.2021.27.5.437.
  24. Hadi M.N.S. and Widiarsa I.B.R. (2012), "Axial and flexural performance of square RC columns wrapped with CFRP under eccentric loading", J. Compos. Constr., 16, 640-649. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000301.
  25. Hodhod, O.A., Hassan, W., Hilal, M.S. and Bahnasawy, H. (2005), "Strength and ductility of biaxially loaded high strength RC short square columns wrapped with GFRP jackets", Struct. Eng. Mech., 20(6), 727-745. http://doi.org/10.12989/sem.2005.20.6.727.
  26. Liu, Y., Dong, A., Zhao, S., Zeng, Y. and Wang, Z. (2021), "The effect of CFRP-shear strengthening on existing circular RC columns under impact loads", Constr. Build. Mater., 302, 124185. https://doi.org/10.1016/j.conbuildmat.2021.124185.
  27. Lotfy, E.M. (2018), "Numerical study of long columns strengthened by Fiber Reinforced Polymer (FRP)", IJESRT, 7(5), 257-271.
  28. Mahdavi, N., Ahmadi, H.R. and Bayat, M. (2019), "Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns", Struct. Eng. Mech., 70(6), 703-710. https://doi.org/10.12989/sem.2019.70.6.703.
  29. Mercimek, O., Anil, O., Ghoroubi, R., Sakin, S. and Yilmaz, T. (2021), "Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to low-velocity impact load", Struct. Eng. Mech., 79(6), 749-765. https://doi.org/10.12989/sem.2021.79.6.749.
  30. Moretti, M.L. (2019), "Effectiveness of different confining configurations of FRP jackets for concrete columns", Struct. Eng. Mech., 72(2), 155-168. https://doi.org/10.12989/sem.2019.72.2.155.
  31. Narule, G.N. and Bambole, A.N. (2018), "Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio", Struct. Eng. Mech., 65(6), 679-687. https://doi.org/10.12989/sem.2018.65.6.679.
  32. Pan, J.L., Xu, T. and Hu, Z.J. (2007), "Experimental investigation of load carrying capacity of the slender reinforced concrete columns wrapped with FRP", Const. Build. Mater., 21, 1991-1996. https://doi.org/10.1016/j.conbuildmat.2006.05.050.
  33. Park, S. and Aboutaha, R. (2005), "Finite element modeling methodologies for FRP strengthened RC members", Comput. Concrete, 2(5), 389-409. http://doi.org/10.12989/cac.2005.2.5.389.
  34. Punurai, W., Hsu C.T.T., Punurai, S. and Chen, J. (2013), "Biaxially loaded RC slender columns strengthened by CFRP composite fabrics", Eng. Struct., 46, 311-321. http://doi.org/10.1016/j.engstruct.2012.07.014.
  35. Quiertant, M. and Clement, J.L. (2011), "Behavior of RC columns strengthened with different CFRP systems under eccentric loading", Constr. Build. Mater., 25, 452-460. https://doi.org/10.1016/j.conbuildmat.2010.07.034.
  36. Saljoughian, A. and Mostofinejad, D. (2020), "Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression", Constr. Build. Mater., 235, 117786. https://doi.org/10.1016/j.conbuildmat.2019.117786.
  37. Shallan, O., Sakr, T., Khater, M. and Ismail, A. (2021), "Modeling of slender RC columns strengthened by steel angles and strips", Comput. Concrete, 28(4), 361-367. https://doi.org/10.12989/cac.2021.28.4.361.
  38. Shan, Z.W. and Su, R.K.L. (2021), "Axial strengthening of RC columns by direct fastening of steel plates", Struct. Eng. Mech., 77(6), 705-720. https://doi.org/10.12989/sem.2021.77.6.705.
  39. Si Youcef, Y., Amziane, S. and Chemrouk, M. (2015), "CFRP confinement effectiveness on the behavior of reinforced concrete columns with respect to buckling instability", Constr. Build. Mater., 81, 81-92. https://doi.org/10.1016/j.conbuildmat.2015.02.006.
  40. Si Youcef, Y., Amziane, S. and Chemrouk, M. (2015), "Effectiveness of strengthening by CFRP on behavior of reinforced concrete columns with respect to the buckling instability", Mater. Struct., 48, 35-51. https://doi.org/10.1617/s11527-013-0166-6.
  41. Siddiqui, N.A., Alsayed, S.H., Al-Salloum, Y.A., Iqbal, R.A. and Abbas, H. (2014), "Experimental investigation of slender circular RC columns strengthened with FRP composites", Constr. Build. Mater., 69, 323-334. http://doi.org/10.1016/j.conbuildmat.2014.07.053.
  42. Sika Group, (2014), "Refurbishment. Structural strengthening with Sika systems-842-ID51881".
  43. Sikadur-330, 2-Part Epoxy Impregnation Resin, Product Data Sheet Edition 24/08/2011, No 9.97.
  44. Tao, Z. and Yu, Q. (2008), "Behaviour of CFRP-Strengthened slender square RC columns", Mag. Concrete Res., 60(7), 523-533. https://doi.org/10.1680/macr.2008.60.7.523.
  45. Xing, L., Lin, G. and Chen, J.F. (2020), "Behavior of FRP-confined circular RC columns under eccentric compression", J. Compos. Constr., 24(4), 04020030. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001036.
  46. Yang, J., Wang, J. and Wang, Z. (2018), "Rectangular high-strength concrete columns confined with carbon fiber-reinforced polymer (CFRP) under eccentric compression loading", Constr. Build. Mater., 193, 604-622. https://doi.org/10.1016/j.conbuildmat.2018.10.226.
  47. Zidani, M.B., Belakhdar, K., Tounsi, A. and Bedia, E.A. (2015), "Finite element analysis of initially damaged beams repaired with FRP plates", Compos. Struct., 134, 429-439. https://doi.org/10.1016/j.compstruct.2015.07.124.