• Title/Summary/Keyword: sub-cycle

Search Result 1,243, Processing Time 0.03 seconds

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries (실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.446-451
    • /
    • 2022
  • In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.

Variation of Biogenic Opal Production on the Conrad Rise in the Indian Sector of the Southern Ocean since the Last Glacial Period (남극해 인도양 해역에 위치한 콘래드 해령 지역의 마지막 빙하기 이후 생물기원 오팔 생산의 변화)

  • JuYeon Yang;Minoru Ikehara;Hyuk Choi;Boo-Keun Khim
    • Ocean and Polar Research
    • /
    • v.45 no.3
    • /
    • pp.141-153
    • /
    • 2023
  • Biological pump processes generated by diatom production in the surface water of the Southern Ocean play an important role in exchanging CO2 gas between the atmosphere and ocean. In this study, the biogenic opal content of the sediments was measured to elucidate the variation in the primary production of diatoms in the surface water of the Southern Ocean since the last glacial period. A piston core (COR-1bPC) was collected from the Conrad Rise, which is located in the Indian sector of the Southern Ocean. The sediments were mainly composed of siliceous ooze, and sediment lightness increased and magnetic susceptibility decreased in an upward direction. The biogenic opal content was low (38.9%) during the last glacial period and high (73.4%) during the Holocene, showing a similar variation to that of Antarctic ice core ΔT and CO2 concentration. In addition, the variation of biogenic opal content in core COR-1bPC is consistent with previous results reported in the Antarctic Zone, south of the Antarctic Polar Front, in the Southern Ocean. The glacial-interglacial biogenic opal production was influenced by the extent of sea ice coverage and degree of water column stability. During the last glacial period, the diatom production was reduced due to the penetration of light being limited in the euphotic zone by the extended sea ice coverage caused by the lowered seawater temperature. In addition, the formation of a strong thermocline in more extensive areas of sea ice coverage led to stronger water column stability, resulting in reduced diatom production due to the reduction in the supply of nutrient-rich subsurface water caused by a decrease in upwelling intensity. Under such environmental circumstances, diatom productivity decreased in the Antarctic Zone during the last glacial period, but the biogenic opal content increased rapidly under warming conditions with the onset of deglaciation.

Achieving Carbon Neutrality: Technology Innovations and Research Needs in the Division of Groundwater and Soil (탄소중립 달성을 위한 지하수토양분야 혁신기술 및 선도연구 소개)

  • Jongbok Choi;Younggyu Son;Young-Soo Han;Man Jae Kwon;Seunghak Lee;Kitae Baek;Yongseok Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.spc
    • /
    • pp.40-54
    • /
    • 2023
  • 산업혁명 이후 화석연료의 광범위한 사용, 삼림 벌채, 토지사용의 변화 등과 같은 인위적 활동은 대기 중 온실가스(GHGs, greenhouse gases) 농도를 지속적으로 증가시켜 지구의 기후위기를 유발하였다. 우리나라의 경우 최근 30년 사이 평균 온도가 1.4℃ 상승하였으며, 국제사회의 일원으로 책임을 다하기 위해 2016년 11월 3일 파리협정을 비준하였다. 이에 파리협정의 목표인 산업화 이전 대비 지구 평균온도 상승을 2℃ 아래, 가능한 1.5℃ 아래로 억제하기 위해 2050년까지 CO2 순배출량을 0으로 만들어야 하며, 이를 위해 다양한 정책 마련과 함께 경제 및 사회 전반에 걸쳐 많은 노력이 경주되고 있는 실정이다. 탄소중립을 달성하기 위해서는 첫 번째로 GHGs 배출을 줄이고, 두번째로 대기에서 CO2 포집을 촉진하기 위해 현재 가동되는 다양한 산업분야의 생산 시스템을 개혁하는 것이 가장 중요한 과제로 고려되고 있다. 그동안 지하수토양 관련 연구분야에서는 지속가능성(sustainability), 복원성(resilience), 녹색성장(green growth) 등과 같은 사회적 요구에 부응하여, 녹색정화(green remediation), 자연 저감(natural attenuation), 탄소포집저장(carbon capture and sequestration), 지열발전등의 기술이 초기단계로 개발이 되고 연구가 되어 왔다. 이러한 기존 연구들은 탄소중립2050의 달성을 위해 고도화되어야하며, 추가적으로 자연 및 인위기원 탄소배출 연구, 토양의 역할을 고려한 저탄소 토지이용 기술, 광물탄산화 등의 연구 및 기술개발이 필요하다고 판단된다. 본 논문에서는 탄소중립2050의 간단한 내용과 함께, 이를 달성하기 위한 지하수토양 분야의 혁신기술 및 선도연구를 소개하였다.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Preparation of Hafnium Oxide Thin Films grown by Atomic Layer Deposition (원자층 증착법으로 성장한 HfO2 박막의 제조)

  • Kim Hie-Chul;Kim Min-Wan;Kim Hyung-Su;Kim Hyug-Jong;Sohn Woo-Keun;Jeong Bong-Kyo;Kim Suk-Whan;Lee Sang-Woo;Choi Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • The growth of hafnium oxide thin films by atomic layer deposition was investigated in the temperature range of $175-350^{\circ}C$ using $Hf[N(CH_3)_2]_4\;and\;O_2$ as precursors. A self-limiting growth of $0.6\AA/cycle$ was achieved at the substrate temperature of $240-280^{\circ}C$. The films were amorphous and very smooth (0.76-0.80 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. X-ray photoelectron spectroscopy analysis showed that the films grown at $300^{\circ}C$ was almost stoichiometric. Electrical measurements performed on $MoW/HfO_2$(20 nm)/Si MOS structures exhibited high dielectric constant$(\~17)$ and a remarkably low leakage current density of at an applied field of $1.5-6.2\times10^{-7}A/cm^2$ MV/cm, probably due to the stoichiometry of the films.

Implementing Activity-based LCA Model for Carbon Dioxide Emission Analysis and Allocation of Environment Cost (세부 공정별 CO2 배출 분석 및 환경비용 원가배분을 위한 Activity-based LCA 모델의 도입 - 커튼월 공사를 중심으로 -)

  • Lim, Ji-Youn;Yi, June-Seong;Shin, Seung-Woo;Son, Jeong-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.78-88
    • /
    • 2012
  • As worldwide efforts to reduce global warming gases, the construction Industry is endeavoring to diminish carbon dioxides emissions. Especially, by introducing the LCA methodology to the industry, A variety of related studies to measure the emission of carbon dioxides have been conducted. However, when the conventional LCA methodology is applied to the construction projects, some limitations have been reported. To overcome the restrictions derived from the industry characteristics, this research suggested the Activity-based LCA model by applying the Activity-based Costing (ABC), which breaks down the whole life cycles into more detailed stages. By implementing the newly developed model, forecasting accuracy of $CO_2$ emission was elevated, and the critical control points on carbon dioxides were established. Through the case study of aluminium curtain-wall system, this research verified the usefulness of the Activity-based LCA.

pH Control of Feed Water for HRSG with Additional Injection of NH3 (암모니아 추가 주입에 의한 배열회수보일러 급수의 수소이온농도 조절)

  • Mok, Yong-kang;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.11 no.2
    • /
    • pp.32-38
    • /
    • 2015
  • This study was conducted on combined cycle power plant consisting of HRSG with integral deaerator type to avoid tube failures of low pressure evaporator tubes. Based on the observation of pH variation at the discharge of boiler feed water pump by continuous pH measurement for a period of time, it was identified that pH of feed water is getting reduced as ammonia is distributed into vapor and liquid depending on the distribution ratio of ammonia in the LP drum after the deaerator. To solve this problem, the counterplan was prepared by reexamination of ammonia injection point and quantity. In conclusion, it was accomplished that 9.2~9.6 is the optimized pH range for boiler feed water by arranging additional piping for ammonia to inject directly to LP drum.

  • PDF

Anti-cancer Effects of Scutellaria barbata in AGS Human Gastric Adenocarcinoma Cells (인체 위암세포주에서 반지련(半枝蓮)의 항암 효능에 관한 연구)

  • Shim, Ji Hwan;Lee, Soojin;Gim, Huijin;Park, Hyun Soo;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • The aim of the study is to investigate the anti-cancer effects of Scutellaria barbata in AGS human gastric adenocarcinoma cells. MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and caspase 3 or 9 activity assay were carried out to examine cell death with Scutellaria barbata. To elucidate the inhibitory effects of Scutellaria barbata, cell cycle (sub-G1) analysis and mitochondrial membrane potential were performed in AGS cells after 24 h incubation with Scutellaria barbata. Scutellaria barbata induced apoptosis in AGS cells by using the MTT assay, the sub-G1 analysis and mitochondrial membrane potential assay. The stronger inhibition effects of AGS cell growth was observed by application of Scutellaria barbata combined with several anti-cancer drugs (paclitaxel, 5-fluorouracil, cisplatin, ectoposide, doxorubicin and docetaxel) in comparison to the application of Scutellaria barbata or anti-cancer drugs. Our findings provide insight into unraveling the effects of Scutellaria barbata in human gastric cancer cells and developing therapeutic agents against gastric cancer.