DOI QR코드

DOI QR Code

실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries

  • 이태헌 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • Lee, Tae Heon (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2022.01.25
  • 심사 : 2022.03.23
  • 발행 : 2022.08.01

초록

본 연구에서는 용량 및 장기 안정성을 개선하기 위하여 나노 실리콘 시트와 CNT를 정전기적 결합을 통해 피치가 코팅된 나노 실리콘 시트/CNT 복합체를 합성하였다. NaCl의 결정면에 스토버 법을 통해 제조된 나노 실리카 시트를 마그네슘 열 환원법을 사용하여 나노 실리콘 시트로 환원하였다. 산 처리를 통해 음으로 도전된 CNT와 APTES 표면처리를 통한 양으로 도전된 나노 실리콘 시트를 결합하여 나노 실리콘 시트/CNT 복합소재를 합성하였으며, 석유계 피치를 코팅하기 위하여 THF를 용매로 사용하였다. 제조된 음극복합소재의 물리적 특성은 FE-SEM, XRD, EDS를 통하여 분석하였고, LiPF6 (EC:DMC:EMC = 1:1:1 vol%)를 전해액으로 사용하여 전지를 제조하였으며, 전기화학적 특성을 충·방전 사이클, 율속, differential capacity, EIS 테스트를 통해 조사하였다. 높은 조성의 실리콘과 전도성이 좋은 CNT를 사용할 경우 고용량 및 안정성이 우수한 음극소재를 제조할 수 있음을 알 수 있었다. 피치가 코팅된 나노 실리콘 시트/CNT 음극복합소재는 초기 방전 용량이 2344.9 mAh/g을 보였으며, 50 사이클 이후 용량 유지율이 81%로 피치가 코팅되지 않은 복합소재에 비해 개선된 전기화학적 성능을 확인할 수 있었다.

In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/CNT composites.

키워드

참고문헌

  1. Wang, Z. Y., Wang, W. T., Xiao, W. and Lou, X. W., "Amorphous CoSnO3@C Nanoboxes with Superior Lithium Storage Capability," Energy Environ. Sci., 6, 87-91(2013). https://doi.org/10.1039/C2EE23330D
  2. Bao, Q., Huang, Y. H., Lan, C. K., Chen, B. H. and Duh, J. G., "Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes," Electrochim. Acta, 173, 82-90(2015). https://doi.org/10.1016/j.electacta.2015.04.155
  3. Kim, N., Park, H., Yoon, N. and Lee, J. K., "Zeolith-templated Mesoporous Silicon Particles for Advanced Lithium-ion Battery Anodes," ACS Nano, 12, 3853-3864(2018). https://doi.org/10.1021/acsnano.8b01129
  4. Yang, Y., Wang, Z., Yan, G., Guo, H., Wang, J., Li, X., Zhou, Y. and Zhou, R., "Pitch Carbon and LiF co-modified Si-based Anode Material for Lithium Ion Batteries," Ceram. Int., 43, 8590-8595(2017). https://doi.org/10.1016/j.ceramint.2017.03.125
  5. Lee, J. H. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-performance Lithium Batteries," Korean J. Chem. Eng., 34(12), 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  6. Liu, J. and Liu, X. W., "Two-Dimensional Nanoarchitectures for Lithium Storage," Adv. Mater., 24, 4097-4111(2012). https://doi.org/10.1002/adma.201104993
  7. Park, J. M., Cho, J. H., Ha, J. H., Kim, H. S., Kim, S. W. Lee, J., Chung, K. Y., Cho, B. W. and Choi, H. J., "Reversible Crystalline-amorphous Phase Ransformation in Si Nanoseets with Lithi-/delithiation," Nanotechnology, 28, 255401-255408(2017). https://doi.org/10.1088/0957-4484/28/25/255401
  8. Dou, F., Shi, L., Chen, G. and Zhang, D., "Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries," Electrochem. Energy Reviews, 2, 149-198(2019). https://doi.org/10.1007/s41918-018-00028-w
  9. Chen, S., Chen, Z., Xu, X., Cao, C., Xia, M and Luo, Y., "Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode," Small, 14(12), 1703361(2018). https://doi.org/10.1002/smll.201703361
  10. Su, M. R., Wan, H. F., Liu, Y. J., Xiao, W., Dou, A. C., Wang, Z. X. and Guo, H. J., "Multi Layered Carbon Coated Si-based Composite as Anode for Lithium-ion Batteries," Powder Technol., 323, 294-300(2018). https://doi.org/10.1016/j.powtec.2017.09.005
  11. Mu, T. S., Zuo, p. J., Lou, S. F., Pan, Q. R., Li, Q., Du, C. Y., Gao, Y. Z., Cheng, X. Q., Ma, Y. L. and Yin, G. P., "A Two-dimensional Nitrogen-rich Carbon/silicon Composite as High Performance Anode Material for Lithium Ion Batteries," Chem. Eng. J., 341, 37-46(2018). https://doi.org/10.1016/j.cej.2018.02.026
  12. Li, Z. H., Li, Z. P., Zhong, W. H., Li, C. F., Li, L. Q. and Zhang, H. Y., "Facile Synthesis of Ultrasmall Si Particles Embedded in Carbon Framework Using Si-carbon Integration Strategy with Superior Lithium Ion Storage Performance," Chem. Eng. J., 319, 1-8(2017). https://doi.org/10.1016/j.cej.2017.02.141
  13. Martin, C., Crosnier, O., Retoux, R., Belanger, D., Schleich, D. M. and Brousse, T., "Chemical Coupling of Carbon Nanotubes and Silicon Nanoparticles for Improved Negative Electrode Performance in Lithium-ion Batteries," Adv. Funct. Mater., 21, 3524-3530(2011). https://doi.org/10.1002/adfm.201002100
  14. Chen, Y. L., Hu, Y., Shen, Z., Chen, R. Z., He, X., Zhang, X. W., Zhang, Y. and Wu, K. S., "Sandwich Structure of Graphene-protected Silicon/carbon Nanofibers for Lithium-ion Battery Anodes," Electrochim. Acta, 210, 53-60(2016). https://doi.org/10.1016/j.electacta.2016.05.086
  15. Correa-Duarte, M. A., Kosiorek, A., Kandulski, W., Giersig, M. and Liz-Marzan, L. M., "Layerby-layer Assembly of Multiwall Carbon Nanotubes on Spherical Colloids," Chem. Mater., 17, 3268-3272(2005). https://doi.org/10.1021/cm047710e
  16. Han, U. J., Hwang, J. U., Kim, K. S., Kim, J. H., Lee, J. D. and Im, J. S., "Optimization of the Preparation Condition for Pitch Based Anode to Enhance the Electrochemical Properties of LIBs," J. Ind. Eng. Chem., 73, 241-247(2019). https://doi.org/10.1016/j.jiec.2019.01.031
  17. Park, G. D., Choi, J. H., Jung, D. S., Park, J. S. and Kang, Y. C., "Three-dimensional Porous Pitch-derived Carbon Coated Si Nanoparticles-CNT Composite Microsphere with Superior Electrochemical Performance for Lithium Ion Batteries," J. Alloys Compd., 821, 153224(2020). https://doi.org/10.1016/j.jallcom.2019.153224
  18. Lai, J., Guo, H., Wang, Z., Li, X., Zhang, X., Wu, F. and Yue, P., "Preparation and Characterization of Flake Graphite/Silicon/Carbon Spherical Composite as Anode Materials for Lithiumion Batteries," J. Alloys Compd., 530, 30-35(2012). https://doi.org/10.1016/j.jallcom.2012.03.096
  19. Lee, S. H. and Lee, J. D., "Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch," Korean Chem. Eng. Res., 56(4), 561-567(2018).
  20. Casas, C. and Li, W., "A Review of Application of Carbon Nanotubes for Lithium Ion Battery Anode Material," J. Power Sources, 208, 74-85(2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
  21. Yoshio, M., Wang, H. and Fukuda, K., "Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material," Angew. Chem. Int. Ed., 42, 4203-4206(2003). https://doi.org/10.1002/anie.200351203
  22. Lee, T. H. and Lee, J. D., "Electrochemical Performance of Pitch Coated Nano Silicon Sheets/graphite Composite as Anode Material," Korean Chem. Eng. Res., 59(4), 487-482(2021). https://doi.org/10.9713/KCER.2021.59.4.487
  23. Li, M., Hou, X., Fu, L., Wang, S., Hu. X., Qin, H., Wu, Y., Ru, Q., Liu, X. and Hu, S., "Mass-Producible Method for Preparation of a Carbon-Coated Graphite@Plasama Nano-Silicon@Carbon Composite with Enhanced performance as Lithium ion Battery Anode," Electrochim. Acta, 249, 113-121(2017). https://doi.org/10.1016/j.electacta.2017.07.146
  24. Xie, J., Tong, L., Su, L., Xu, Y., Wang, L. and Wang, Y., "Core-shell Yolk-shell Si@C@Void@C Nanohybrids as Advanced Lithium Ion Battery Anodes with Good Electronic Conductivity and Corrosion Resistance," J. Power Sources, 342, 529(2017). https://doi.org/10.1016/j.jpowsour.2016.12.094