• Title/Summary/Keyword: structured electrode

Search Result 85, Processing Time 0.025 seconds

Electrode Pattern Dependency of Vertical Structured InGaN/GaN Light Emitting Diode (수직형구조 InGaN/GaN 발광다이오드의 전극 패턴 의존성)

  • Yun, Ju-Seon;Hwang, Seong-Min;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.285-286
    • /
    • 2007
  • Current distributions according to electrode patterns in vertical structured InGaN/GaN LED (light emitting diode) were investigated quantitatively by utilizing three dimensional electrical circuit modeling method. The uniformity of the injected current density in the active layer was compared among different electrode patterns. It was found that the current uniformity was greatly dependent on the electrode pattern in vertical InGaN/GaN LEDs.

  • PDF

Structural Characteristics of Multilayer Piezoelectric Transformer According to Designs of Internal Electrode (적층형 압전 변압기의 내부전극에 따른 구조적 특성)

  • 임인호;박종주;정회승;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.898-903
    • /
    • 2001
  • In this study, we investigated amounts, distributions and sizes of pores of multilayer piezoelectric transformer, and predicted heat emission property and electrical characteristics according to designs of internal electrode. Forming densities of device having MLC, fingered and full filled internal electrode structure were 4.73 g/㎤, 4.80 g/㎤, 4.82 g/㎤ and forming porosities were 17.3737%, 13.1475%, 12.6121%, respectively. And sintered densities of MLC structured, fingered and full filled devices were 7.76 g/㎤, 7.75 g/㎤, 7.84 g/㎤ and sintered porosities were 4.0967%, 2.7132%, 2.5317%, respectively. Therefore, we concluded that fingered and full fi1led internal electrode devices, expecially, fingered internal electrode devices had cost-effective effect and maximum poling effect due to higher sintered density and lower porosity than MLC structured device. Also we can predict that they have an effect on good heat emission and high output properties of multilayer piezoelectric transformer.

  • PDF

Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes (Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구)

  • Lee, Wun Ho;Jang, Won Tae;Kim, Jong Su;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries (소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

Electrochemical Characteristics of supercapacitor using organic-inorganic electrode (유-무기 복합전극을 이용한 수퍼커패시터의 전기화학적 특성)

  • Kim, Hong-Il;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.164-166
    • /
    • 2002
  • Over the past two decades, the electrochemical supercapaictors are receiving growing attention due to their possible applications as power backup in electronic equipment and electrical vehicles. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nano-structured supramolecular oligomer of 1,5-diamino anthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency

  • PDF

Design of Structured Electrode for High Energy Densified and Fast Chargeable Lithium Ion Batteries (전극구조설계 기반 고에너지밀도·고속충전 리튬이온배터리 제작)

  • Park, Sujin;Bae, Chang-Jun
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.406-415
    • /
    • 2018
  • Lithium ion batteries have been widely adopted as energy storage and the LIB global market has grown fastest. However, LIB players have struggled against maximizing energy density since commercial monolithic electrodes are limited by electrolyte depletion caused by long and tortuous Li-ion diffusion pathways. Recently, new strategies designing the structure of battery electrodes strive for creating fast Li-ion path and alleviating electrolyte depletion problem in monolithic electrodes. In this paper, given the fundamental and experimental approaches, we compare the monolithic to structured electrodes and demonstrate the ways to fabricate high energy, fast chargeable Lithium ion battery.

Preparation of nano composite metal-oxide electrode and its application for superrcapacitor (나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용)

  • Kim, Hong-Il;Lee, Ju-Won;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Coating Property of Hybrid Structured Photo-Electrode to Increase Dye-Sensitized Solar Cells Efficiency (염료감응형 태양전지의 효율 향상을 위한 하이브리드 구조 광전극의 코팅특성)

  • Kim, Min-Hee;Lee, Hyung-Woo;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • The hybrid structured photo-electrode for dye-sensitized solar cells was fabricated based on the composites of $TiO_2$ nanoparticles and nanowires. Three samples with different hybrid structures were prepared with 17 vol%, 43 vol%, and 100 vol% nanowires. The energy conversion efficiency was enhanced from 5.54% for pure nanoparticle cells to 6.01% for the hybrid structure with 17 vol% nanowires. For the hybrid structured layers with high nanowires concentration (43 vol% and 100 vol%), the efficiency decreased with the nanowire concentration, because of the decrease of specific surface area, and of thus decreased current density. The random orientations of $TiO_2$ nanowires can be preserved by the doctor blade process, resulted in the enhanced efficiency. The hybrid structured $TiO_2$ layer can possess the advantages of the high surface area of nanoparticles and the rapid electron transport rate and the light scattering effect of nanowires.

Electrochemical Characteristics of DAAQ/CNFs electrode for Supercapacitor (슈퍼커패시터용 DAAQ/CNFs 전극의 전기화학적 특성)

  • Kim, Hong-Il;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1184-1187
    • /
    • 2003
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. A new type electric double layer capacitor (EDLC) was constructed by using carbon nanofibers (CNFs) and DAAQ(1,5-diaminoanthraquinone) electrode. Carbonaceous materials are found in variety forms such as graphite, diamond, carbon fibers etc. While all the carbon nanofibers include impurities such as amorphous carbon, nanoparticles, catalytic metals and incompletely grown carbons. We have eliminated of Ni particles and some carbonaceous particles in nitric acid. Nitric acid treated CNFs could be covered with very thin DAAQ oligomer from the results of CV and TG analyses and SEM images. DAAQ oligomer film exhibited a specific capacity as 45-50 Ah/kg in 4M $H_2SO_4$. We established Process Parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured CNFs electrodes using controlled solution chemistry. As a result, CNFs coated by DAAQ composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

Volumetric Capacitance of In-Plane- and Out-of-Plane-Structured Multilayer Graphene Supercapacitors

  • Yoo, Jungjoon;Kim, Yongil;Lee, Chan-Woo;Yoon, Hana;Yoo, Seunghwan;Jeong, Hakgeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • A graphene electrode with a novel in-plane structure is proposed and successfully adopted for use in supercapacitor applications. The in-plane structure allows electrolyte ions to interact with all the graphene layers in the electrode, thereby maximizing the utilization of the electrochemical surface area. This novel structure contrasts with the conventional out-of-plane stacked structure of such supercapacitors. We herein compare the volumetric capacitances of in-plane- and out-of-plane-structured devices with reduced multi-layer graphene oxide films as electrodes. The in-plane-structured device exhibits a capacitance 2.5 times higher (i.e., $327F\;cm^{-3}$) than that of the out-of-plane-structured device, in addition to an energy density of $11.4mWh\;cm^{-3}$, which is higher than that of lithium-ion thin-film batteries and is the highest among in-plane-structured ultra-small graphene-based supercapacitors reported to date. Therefore, this study demonstrates the potential of in-plane-structured supercapacitors with high volumetric performances as ultra-small energy storage devices.