• Title/Summary/Keyword: structure theorem

Search Result 213, Processing Time 0.019 seconds

A FIXED POINT THEOREM REVISITED

  • Kirk, W.A.;Kang, B.G.
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.285-291
    • /
    • 1997
  • In this paper, we obtain an abstract formulation of a fixed point theorem for nonexpansive mappings. Our theorem is a non-metric version of Kirk's original theorem.

  • PDF

GENERALIZATIONS OF THE NASH EQUILIBRIUM THEOREM ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.697-709
    • /
    • 2001
  • Generalized forms of the von neumann-Sion type minimax theorem, the Fan-Ma intersection theorem, the Fan-a type analytic alternative, and the Nash-Ma equilibrium theorem hold for generalized convex spaces without having any linear structure.

  • PDF

A Robust Variable Structure Controller for the Mixed Tracking Control of Robot Manipulators (로봇 메니플레이터의 혼합 추적 제어를 위한 강인 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1908-1913
    • /
    • 2010
  • In this paper, a robust variable structure tracking controller is designed for the mixed tracking control of highly nonlinear rigid robot manipulators for the first time. The mixed control problem under consideration is extended from the basic tracking problem, with the different initial condition of both the planned trajectory and link of robots. This control problem in robotics is not addressed to until now. The tracking accuracy to the sliding trajectory after reaching is analyzed. The stability of the closed loop system is investigated in detail in Theorem 2. The results of Theorem 2 provide the stable condition for control gains. Combing the results of Theorem 1 and Theorem 2 gives rise to possibility of designing the improved variable structure tracking controller to guarantee the tracking error from the determined sliding trajectory within the prescribed accuracy after reaching. The usefulness of the algorithm has been demonstrated through simulation studies on the mixed tracking control of a two.link robot under parameter uncertainties and payload variations.

A STRUCTURE THEOREM AND A CLASSIFICATION OF AN INFINITE LOCALLY FINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.531-539
    • /
    • 2009
  • In this paper we first present a structure theorem for an infinite locally finite 3-connected VAP-free planar graph, and in connection with this result we study a possible classification of infinite locally finite planar graphs by reducing modulo finiteness.

  • PDF

A CHARACTERIZATION OF DIRICHLET SETS

  • Lee, Hung-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.183-188
    • /
    • 1990
  • The notion of a Dirichlet set has been studied for several decades. Such sets are named in honour of Dirichlet's Theorem [4, pp.235] which, in modern terminology, simply says that every finite set in R is a dirichlet set. In this paper, we present a structure theorem which characterizes all D-sets on the real line. We also use our structure theorem to give a new proof of a known criterion for proving that a set fails to be a D-set.

  • PDF

A STRUCTURE THEOREM FOR $p$-HYPONORMAL CONTRACTIONS

  • Lee, Mi-Young;Lee, Sang-Hun
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 1998
  • In this paper we prove a structure theorem for p-hyponomal contractions and also give an example of a p-hyponormal operator which is not *-paranormal.

  • PDF

GENERALIZED SOBOLEV SPACES OF EXPONENTIAL TYPE

  • Lee, Sungjin
    • Korean Journal of Mathematics
    • /
    • v.8 no.1
    • /
    • pp.73-86
    • /
    • 2000
  • We study the Sobolev spaces to the generalized Sobolev spaces $H^s_{\mathcal{G}}$ of exponential type based on the Silva space $\mathcal{G}$ and investigate its properties such as imbedding theorem and structure theorem. In fact, the imbedding theorem says that for $s$ > 0 $u{\in}H^s_{\mathcal{G}}$ can be analytically continued to the set {$z{\in}\mathbb{C}^n{\mid}{\mid}Im\;z{\mid}$ < $s$}. Also, the structure theorem means that for $s$ > 0 $u{\in}H^{-s}_{\mathcal{G}}$ is of the form $$u={\sum_{\alpha}\frac{s^{{|\alpha|}}}{{\alpha}!}D^{\alpha}g{\alpha}$$ where $g{\alpha}$'s are square integrable functions for ${\alpha}{\in}\mathbb{N}^n_0$. Moreover, we introduce a classes of symbols of exponential type and its associated pseudo-differential operators of exponential type, which naturally act on the generalized Sobolev spaces of exponential type. Finally, a generalized Bessel potential is defined and its properties are investigated.

  • PDF

Optimal Placement of Sensors for Damage Detection in a Structure and its Application (구조물의 손상탐지를 위한 센서 위치 최적화 및 적용)

  • 박수용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.81-87
    • /
    • 2003
  • In this paper, the feasibility of using Shannon's sampling theorem to reconstruct exact mode shapes of a structural system from a limited number of sensor points and localizing damage in that structure with reconstructed mode shapes is investigated. Shannon's sampling theorem for the time domain is reviewed. The theorem is then extended to the spatial domain. To verify the usefulness of extended theorem, mode shapes of a simple beam are reconstructed from a limited amount of data and the reconstructed mode shapes are compared to the exact mode shapes. On the basis of the results, a simple rule is proposed for the optimal placement of accelerometers in modal parameter extraction experiments. Practicality of the proposed rule and the extended Shannon's theorem is demonstrated by detecting damage in laboratory beam structure with two-span via applying to mode shapes of pre and post damage states.

Some Properties of Complex Grassmann Manifolds

  • Kim, In-Su
    • Honam Mathematical Journal
    • /
    • v.5 no.1
    • /
    • pp.45-69
    • /
    • 1983
  • The hermitian structures on complex manifolds have been studied by several mathematicians ([1], [2], and [3]), and the Kähler structure on hermitian manifolds have been so much too ([6], [12], and [15]). There has been some gradual progress in studying the invariant forms on Grassmann manifolds ([17]). The purpose of this dissertation is to prove the Theorem 3.4 and the Theorem 4.7, with relation to the nature of complex Grassmann manifolds. In $\S$ 2. in order to prove the Theorem 4.7, which will be explicated further in $\S$ 4, the concepts of the hermitian structure, connection and curvature have been defined. and the characteristic nature about these were proved. (Proposition 2.3, 2.4, 2.9, 2.11, and 2.12) Two characteristics were proved in $\S$ 3. They are almost not proved before: particularly. we proved the Theorem 3.3 : $G_{k}(C^{n+k})=\frac{GL(n+k,C)}{GL(k,n,C)}=\frac{U(n+k)}{U(k){\times}U(n)}$ In $\S$ 4. we explained and proved the Theorem 4. 7 : i) Complex Grassmann manifolds are Kahlerian. ii) This Kähler form is $\pi$-fold of curvature form in hyperplane section bundle. Prior to this proof. some propositions and lemmas were proved at the same time. (Proposition 4.2, Lemma 4.3, Corollary 4.4 and Lemma 4.5).

  • PDF