Bull. Korean Math. Soc. ${\bf 46}$ (2009), No. 4, pp. 657–671 DOI 10.4134/BKMS.2009.46.4.657

A STRUCTURE THEOREM FOR COMPLETE INTERSECTIONS

EUN JEONG CHOI, OH-JIN KANG, AND HYOUNG J. KO

ABSTRACT. Buchsbaum and Eisenbud proved a structure theorem for Gorenstein ideals of grade 3. In this paper we derive a class of the perfect ideals from a class of the complete matrices. From this we give a structure theorem for complete intersections of grade g > 3.

1. Introduction

Let R be a Noetherian local ring and I a perfect ideal of grade q in R. Many people have been studying the algebra structure on the minimal free resolution of R/I, in particular, Gorenstein ideals, the ideals of type 1. In 1968, Burch [3] characterized perfect ideals of grade 2 by showing a structure theorem due to Hilbert in a special case: every perfect ideal of grade 2 generated by nelements is the ideal of (n-1)st order minors of an $(n-1) \times n$ matrix. In 1977, Buchsbaum and Eisenbud [2] gave a structure theorem for Gorenstein ideals of grade 3 which says that every Gorenstein ideal of grade 3 in R is generated by the maximal order Pfaffians of an alternating matrix. However a structure theorem for Gorenstein ideals of grade 4 is more complicated than that of grade 3 and not completely known. In 1987, Brown [1] described a structure theorem for a certain class of perfect ideals I which have grade 3, type 2 and $\lambda(I) = \dim_k \Lambda_1^2 > 0$, where $\lambda(I)$ is a numerical invariant defined in [5]. In 1989, Sanchez [7] gave a structure theorem for type 3, grade 3 perfect ideals which have $\lambda(I) = \dim_k \Lambda_1^2 = 2$ or greater. In this paper we will describe a structure theorem for complete intersections of grade g > 3, which says that every complete intersection of grade g > 3 in R is generated by the elements x_i 's, where x_i^{g-1} is the determinant of the $(g-1) \times (g-1)$ diagonal matrix drawn from a complete matrix of grade g for each i $(1 \le i \le g)$.

In Section 2 we review some of the properties of alternating matrices, linkage theory, and a structure theorem for Gorenstein ideals of grade 3.

In Section 3 we give the concept of a complete matrix of grade 4 and provide a structure theorem for complete intersections of grade 4.

©2009 The Korean Mathematical Society

Received August 2, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 13C05,\ 13C14,\ 13C40,\ 14M10.$

Key words and phrases. complete intersection of grade g, structure theorem.

In Section 4 we introduce a complete matrix f of grade g > 3, and define the ideal $\mathcal{K}_{g-1}(f)$ associated with f. Then we prove a structure theorem for complete intersections of grade g > 3. The structure theorem [4] for complete intersections of grade 4 is just a special case of our main Theorem 4.10. Throughout this paper, we assume that all rings are a Noetherian local ring with maximal ideal \mathfrak{m} unless otherwise stated.

2. Gorenstein ideals of grade 3

The grade of a proper ideal I in R is the length of the maximal R-sequence contained in I. We say that an ideal I of grade g is *perfect* if grade $I = \text{prodim}_R(R/I) = g$. If I is a perfect ideal of grade g, then the *type* of I is defined to be the dimension of the R/\mathfrak{m} -vector space $\text{Ext}_R^g(R/\mathfrak{m}, R/I)$. A perfect ideal I of grade g is *Gorenstein* if type I = 1, equivalently, if \mathbb{F} is the minimal free resolution of R/I,

$$\mathbb{F}: 0 \longrightarrow F_g \xrightarrow{\varphi_g} F_{g-1} \xrightarrow{\varphi_{g-1}} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0(=R) ,$$

then the rank of F_g is 1. A perfect ideal I of grade g is a complete intersection if it is generated by g elements, and is an almost complete intersection if it is minimally generated by g + 1 elements.

Let R be a commutative ring, and F a finite free R-module. An R-module homomorphism $\varphi: F \to F^*$ is said to be alternating if with respect to some (and therefore any) basis of F and the corresponding dual basis of F^* , the matrix φ is alternating, i.e., skew-symmetric and all its diagonal entries are 0. Now suppose that φ is alternating, choose a basis of F and the corresponding dual basis of this, and identify φ with the corresponding matrix (φ_{ij}) . If rank Fis odd, then det $\varphi = 0$, and if rank F is even, then there exists an element $Pf(\varphi) \in R$, called the Pfaffian of φ , which is a polynomial function of the entries of φ , such that det $\varphi = Pf(\varphi)^2$. We set $Pf(\varphi) = 0$ if rank F is odd. Pfaffians can be developed along a row just like the determinants. Denote by $Pf_r(\varphi)$ the ideal generated by the rth order Pfaffians of φ . With these concepts Buchsbaum and Eisenbud gave a complete structure for Gorenstein ideals of grade 3:

Theorem 2.1 ([2]). Let R be a Noetherian local ring with maximal ideal \mathfrak{m} .

(1) Let F be a free R-module with rank F = n, where $n \ge 3$ is an odd integer. Let $\varphi : F^* \to F$ be an alternating map whose image is contained in $\mathfrak{m}F$. Suppose that $Pf_{n-1}(\varphi)$ has grade 3. Then $Pf_{n-1}(\varphi)$ is a Gorenstein ideal minimally generated by n elements.

(2) Every Gorenstein ideal of grade 3 arises as in (1).

Now we review some of the notions in the linkage theory formulated by Peskine and Szpiro in [6].

Definition 2.2. Let I and J be two ideals in a Gorenstein ring R (not necessarily local).

(1) If there exists an *R*-regular sequence $\boldsymbol{\alpha} = \alpha_1, \alpha_2, \ldots, \alpha_g$ in $I \cap J$ such that $J = (\boldsymbol{\alpha}) : I$ and $I = (\boldsymbol{\alpha}) : J$, then *I* and *J* are said to be linked (with respect to $\boldsymbol{\alpha}$).

(2) If I and J are linked and if $\operatorname{Ass}(R/I) \cap \operatorname{Ass}(R/J) = \emptyset$, equivalently, if I and J are linked (with respect to $\boldsymbol{\alpha}$) and if $I \cap J = (\boldsymbol{\alpha})$, then I and J are said to be geometrically linked.

Let R be a Gorenstein local ring of Krull dimension g with maximal ideal \mathfrak{m} . If I and J are perfect ideals of grade g, then they are not geometrically linked because (R/I) and (R/J) are both zero-dimensional artinian local rings. Peskine and Szpiro gave a method of constructing a Gorenstein ideal of grade g + 1 from two perfect ideals of grade g:

Theorem 2.3 ([6]). Let R be a Gorenstein local ring with maximal ideal \mathfrak{m} . Let I and J be geometrically linked Cohen-Macaulay ideals of grade g by a regular sequence $\mathbf{x} = x_1, x_2, \ldots, x_g$ and let K = I + J. Then K is a Gorenstein ideal of grade g + 1.

Let *F* be a free *R*-module with a basis $\{e_1, e_2, \ldots, e_n\}$ and let *I* be an ideal generated by a regular sequence $\mathbf{x} = x_1, x_2, \ldots, x_n$. Let $\mathbb{K}(\mathbf{x})$ be the Koszul complex defined by $\mathbf{x} = x_1, x_2, \ldots, x_n$. Then

$$\mathbb{K}(\mathbf{x}): 0 \longrightarrow \wedge^{n} F \xrightarrow{d_{n}} \wedge^{n-1} F \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{2}} \wedge^{1} F \xrightarrow{d_{1}} \wedge^{0} F$$

is the minimal free resolution of R/I, where $d_1(e_i) = x_i$ for each *i* with $1 \leq i \leq n$, and for each *p* with $1 \leq p \leq n$, $d_p : \wedge^p F \to \wedge^{p-1} F$ is given by

$$(2.1) \quad d_p(e_{i_1} \wedge e_{i_2} \wedge \dots \wedge e_{i_p}) = \sum_{j=1}^p (-1)^{j-1} d_1(e_{i_j}) e_{i_1} \wedge e_{i_2} \wedge \dots \wedge \widehat{e}_{i_j} \wedge \dots \wedge e_{i_p}.$$

For example, if $\mathbf{x} = x_1, x_2, x_3, x_4, x_5$ is a regular sequence on R, then d_2 has the form

$$(2.2) \ d_2 = \begin{bmatrix} -x_2 & -x_3 & -x_4 & -x_5 & 0 & 0 & 0 & 0 & 0 & 0 \\ x_1 & 0 & 0 & 0 & -x_3 & -x_4 & -x_5 & 0 & 0 & 0 \\ 0 & x_1 & 0 & 0 & x_2 & 0 & 0 & -x_4 & -x_5 & 0 \\ 0 & 0 & x_1 & 0 & 0 & x_2 & 0 & x_3 & 0 & -x_5 \\ 0 & 0 & 0 & x_1 & 0 & 0 & x_2 & 0 & x_3 & x_4 \end{bmatrix}.$$

The exterior algebra $\wedge F$ is a graded Hopf algebra such that $x \wedge y = (-1)^{pq} y \wedge x$ for $x \in \wedge^p F$ and $y \in \wedge^q F$ and $x \wedge x = 0$ for any homogeneous element x of odd degree. It is well-known that the algebra structure on the Koszul complex which gives the minimal free resolution of a complete intersection is an exterior algebra.

3. Complete intersections of grade 4

In this section we start with a skew-symmetrizable matrix, and a complete matrix of grade 4 which play important roles in describing the complete intersections of grade 4.

Definition 3.1. Let R be a commutative ring with identity. An $n \times n$ matrix $X = (x_{ij})$ over R is said to be generalized alternating or skew-symmetrizable if there exist nonzero $n \times n$ diagonal matrices $D' = \text{diag}(u_1, u_2, \ldots, u_n)$ and $D = \text{diag}(w_1, w_2, \ldots, w_n)$ with entries in R such that D'XD is alternating. We denote by $\text{GA}_n(R)$ the set of all skew-symmetrizable $n \times n$ matrices over R. If there is no ambiguity about the ring R, then $\text{GA}_n(R)$ is denoted by GA_n .

Notice that every alternating matrix is skew-symmetrizable. For an $n \times n$ skew-symmetrizable matrix X, we denote $\mathcal{A}(X)$ to be an alternating matrix D'XD for some diagonal matrices D' and D. To define a complete intersection of grade 4, we need to describe the submatrices of the given matrix in detail. A $p \times q$ submatrix of an $m \times n$ matrix f is a matrix obtained from f by taking the pq entries at the intersections of the i_1 th, i_2 th, \ldots , i_p th rows and the j_1 th, j_2 th, \ldots , j_q th columns of f, where $1 \leq i_1 < i_2 < \cdots < i_p \leq m$ and $1 \leq j_1 < j_2 < \cdots < j_q \leq n$. The corresponding $p \times q$ submatrix of f is denoted by

$$f(i_1, i_2, \ldots, i_p | j_1, j_2, \ldots, j_q).$$

Notice that the $p \times q$ matrix $f(i_1, i_2, \ldots, i_p | j_1, j_2, \ldots, j_q)$ consisting of the pq entries at the intersection of these rows and columns of f could not be a submatrix of f unless $1 \le i_1 < i_2 < \cdots < i_p \le m$ and $1 \le j_1 < j_2 < \cdots < j_q \le n$. Next we get into the skew-symmetrizable matrices and the special properties of the second differential map d_2 of the Koszul complex $\mathbb{K}(\mathbf{x})$

$$\mathbb{K}(\mathbf{x}): 0 \longrightarrow \wedge^4 F \xrightarrow{d_4} \wedge^3 F \xrightarrow{d_3} \wedge^2 F \xrightarrow{d_2} \wedge^1 F \xrightarrow{d_1} \wedge^0 F$$

defined by a regular sequence $\mathbf{x} = x_1, x_2, x_3, x_4$ on R. With respect to the standard basis of F, d_2 has the following form

	$\left[-x_{2}\right]$	$-x_3$	$-x_4$	0	0	0]	
$d_2 =$	x_1	0	0	$-x_3$	$-x_4$	0	
	0	x_1	0	x_2	0	$-x_4$	•
	0	0	x_1	0	x_2	x_3	

Proposition 3.2. With the notation as above, the second differential map d_2 of the Koszul complex satisfies the following properties:

(1) There are four disjoint pairs (S,T) of two 4×3 submatrices of d_2 ;

(2) By removing a row and interchanging columns, each pair (S,T) can be reduced to a pair (\bar{S},\bar{T}) of 3×3 matrices such that \bar{S} is a diagonal matrix whose determinant is the nonzero 3rd power element x^3 for some $x \in R$, and \bar{T} is a skew-symmetrizable matrix with grade $Pf_2(\mathcal{A}(\bar{T})) = 3$.

Proof. Let $S_1 = d_2(1, 2, 3, 4 | 1, 2, 3)$ and $T_1 = d_2(1, 2, 3, 4 | 4, 5, 6)$ be the disjoint 4×3 submatrices of d_2 . Then the submatrix obtained by removing the first row of S_1 is a 3×3 diagonal matrix \bar{S}_1 whose determinant is equal to x_1^3 . Removing the first row and interchanging columns 1 and 3 of T_1 , we have the 3×3 matrix \bar{T}_1 . Then \bar{T}_1 is skew-symmetrizable, since it becomes an alternating matrix by multiplying the second column of it by -1. Since x_2, x_3, x_4 is a regular sequence on R, $Pf_2(\mathcal{A}(\bar{T}_1)) = (x_2, x_3, x_4)$ has grade 3. Similarly, we can take the disjoint submatrices of d_2 ;

$$S_2 = d_2(1, 2, 3, 4 | 1, 4, 5) \text{ and } T_2 = d_2(1, 2, 3, 4 | 2, 3, 6),$$

$$S_3 = d_2(1, 2, 3, 4 | 2, 4, 6) \text{ and } T_3 = d_2(1, 2, 3, 4 | 1, 3, 5),$$

$$S_4 = d_2(1, 2, 3, 4 | 3, 5, 6) \text{ and } T_4 = d_2(1, 2, 3, 4 | 1, 2, 4).$$

The similar argument gives us the 3×3 diagonal matrix \bar{S}_i whose determinant is equal to x_i^3 or $(-x_i)^3$, and the 3×3 skew-symmetrizable matrix \bar{T}_i with grade $\operatorname{Pf}_2(\mathcal{A}(\bar{T}_i)) = 3$ for i = 2, 3, 4.

Definition 3.3. Let R be a commutative ring with identity. A 4×6 matrix f over R is said to be a *complete matrix of grade* 4 if

(1) f has four distinct pairs (S,T) of disjoint 4×3 submatrices;

(2) By removing a row and interchanging columns, each pair (S, T) is reduced to a pair (\bar{S}, \bar{T}) of 3×3 matrices such that \bar{S} is a diagonal matrix whose determinant is a nonzero 3rd power element x^3 for some $x \in R$, and \bar{T} is a skew-symmetrizable matrix with grade $Pf_2(\mathcal{A}(\bar{T})) = 3$.

The following example illustrates Definition 3.3.

Example 3.4. Let x, y, z, and w be a regular sequence on a commutative ring R. Let f be a 4×6 matrix given by

$$f = \begin{bmatrix} 0 & 0 & -y & -w & -z & 0 \\ 0 & -z & x & 0 & 0 & -w \\ -w & y & 0 & 0 & x & 0 \\ z & 0 & 0 & x & 0 & y \end{bmatrix}.$$

Then f is a complete matrix of grade 4. To see this, we find four distinct pairs of disjoint 4×3 submatrices S_i and T_i of f satisfying the properties in Proposition 3.2. First we consider two submatrices of f;

$$S_1 = \begin{bmatrix} -y & -w & -z \\ x & 0 & 0 \\ 0 & 0 & x \\ 0 & x & 0 \end{bmatrix} \quad \text{and} \quad T_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -z & -w \\ -w & y & 0 \\ z & 0 & y \end{bmatrix}.$$

that is, $S_1 = f(1, 2, 3, 4 | 3, 4, 5)$ and $T_1 = f(1, 2, 3, 4 | 1, 2, 6)$. So S_1 and T_1 are disjoint. By removing the first row and interchanging the second and the third columns of S_1 and T_1 , we can get the 3×3 matrices $\bar{S}_1 = S_1(2, 3, 4 | 1, 3, 2)$ and $\bar{T}_1 = T_1(2, 3, 4 | 1, 3, 2)$. Then \bar{S}_1 is a diagonal matrix whose determinant is a nonzero element x^3 and \bar{T}_1 is skew-symmetrizable since $\bar{T}_1 \operatorname{diag}(1, -1, 1)$ is alternating. It is easy to show that $Pf_2(\mathcal{A}(\bar{T}_1))$ has grade 3. Similarly, we consider the submatrices of f;

$$S_2 = f(1, 2, 3, 4 | 2, 3, 6) \text{ and } T_2 = f(1, 2, 3, 4 | 1, 4, 5),$$

$$S_3 = f(1, 2, 3, 4 | 1, 2, 5) \text{ and } T_3 = f(1, 2, 3, 4 | 3, 4, 6),$$

$$S_4 = f(1, 2, 3, 4 | 1, 4, 6) \text{ and } T_4 = f(1, 2, 3, 4 | 2, 3, 5).$$

Clearly, 4×3 submatrices S_i and T_i of f are disjoint for i = 2, 3, 4. The similar argument gives us the following 3×3 matrices;

$$\begin{split} \bar{S}_2 &= S_2(1,3,4 \mid 2,1,3) \text{ and } \bar{T}_2 = T_2(1,3,4 \mid 1,2,3), \\ \bar{S}_3 &= S_3(1,2,4 \mid 3,2,1) \text{ and } \bar{T}_3 = T_3(1,2,4 \mid 3,2,1), \\ \bar{S}_4 &= S_4(1,2,3 \mid 2,3,1) \text{ and } \bar{T}_4 = T_4(1,2,3 \mid 1,3,2). \end{split}$$

And det $\bar{S}_2 = (-y)^3$, det $\bar{S}_3 = z^3$ and det $\bar{S}_4 = (-w)^3$ are nonzero 3rd power elements and

$$Pf_{2}(\mathcal{A}(T_{1})) = (y, z, w), Pf_{2}(\mathcal{A}(T_{2})) = (x, z, w), Pf_{2}(\mathcal{A}(\bar{T}_{3})) = (x, y, w), Pf_{2}(\mathcal{A}(\bar{T}_{4})) = (x, y, z).$$

Since x, y, z, w is a regular sequence on R, these four ideals have all grade 3. Hence the properties in Proposition 3.2 are satisfied.

We notice that if f is a complete matrix of grade 4, then the matrix obtained from f by interchanging rows of f also becomes a complete matrix of grade 4.

Theorem 3.5 ([4]). Let $f = (f_{ij})$ be a 4×6 complete matrix of grade 4.

- (1) Every column of f has exactly two nonzero entries.
- (2) The number of nonzero rows in each 4×2 submatrix of f is greater than 2.
- (3) Each pair $(\overline{S}, \overline{T})$ of 3×3 matrices given in Definition 3.3 is uniquely determined.

Now we will define an ideal $\mathcal{K}_3(f)$ generated by the radical roots of the determinants of the 3×3 diagonal matrices \bar{S} derived from a given complete matrix f of grade 4 in Theorem 3.5.

Definition 3.6. Let f be a 4×6 complete matrix of grade 4. Let S_i be a unique 3×3 diagonal matrix reduced from the disjoint pair (S_i, T_i) of f such that det $\overline{S}_i = x_i^3$ is nonzero for i = 1, 2, 3, 4. We define $\mathcal{K}_3(f)$ to be the ideal generated by the x_i 's, that is,

$$\mathcal{K}_3(f) = (x_1, x_2, x_3, x_4).$$

Next let us show that the ideal $\mathcal{K}_3(f)$ defines a complete intersection of grade 4. Let f be a complete matrix of grade 4. By Theorem 3.5 we may

assume

$$f = \begin{bmatrix} f_{11} & f_{12} & f_{13} & 0 & 0 & 0\\ f_{21} & 0 & 0 & f_{24} & f_{25} & 0\\ 0 & f_{32} & 0 & f_{34} & 0 & f_{36}\\ 0 & 0 & f_{43} & 0 & f_{45} & f_{46} \end{bmatrix}.$$

Then we have

$$\begin{split} \bar{S}_1 &= f(2,3,4|1,2,3) \text{ and } \bar{T}_1 = f(2,3,4|6,5,4), \\ \bar{S}_2 &= f(1,3,4|1,4,5) \text{ and } \bar{T}_2 = f(1,3,4|6,3,2), \\ \bar{S}_3 &= f(1,2,4|2,4,6) \text{ and } \bar{T}_3 = f(1,2,4|5,3,1), \\ \bar{S}_4 &= f(1,2,3|3,5,6) \text{ and } \bar{T}_4 = f(1,2,3|4,2,1), \end{split}$$

i.e.,

$$\bar{S}_{1} = \begin{bmatrix} f_{21} & 0 & 0 \\ 0 & f_{32} & 0 \\ 0 & 0 & f_{43} \end{bmatrix} \quad \text{and} \quad \bar{T}_{1} = \begin{bmatrix} 0 & f_{25} & f_{24} \\ f_{36} & 0 & f_{34} \\ f_{46} & f_{45} & 0 \end{bmatrix},$$

$$\bar{S}_{2} = \begin{bmatrix} f_{11} & 0 & 0 \\ 0 & f_{34} & 0 \\ 0 & 0 & f_{45} \end{bmatrix} \quad \text{and} \quad \bar{T}_{2} = \begin{bmatrix} 0 & f_{13} & f_{12} \\ f_{36} & 0 & f_{32} \\ f_{46} & f_{43} & 0 \end{bmatrix},$$

$$\bar{S}_{3} = \begin{bmatrix} f_{12} & 0 & 0 \\ 0 & f_{24} & 0 \\ 0 & 0 & f_{46} \end{bmatrix} \quad \text{and} \quad \bar{T}_{3} = \begin{bmatrix} 0 & f_{13} & f_{11} \\ f_{25} & 0 & f_{21} \\ f_{45} & f_{43} & 0 \end{bmatrix},$$

$$\bar{S}_{4} = \begin{bmatrix} f_{13} & 0 & 0 \\ 0 & f_{25} & 0 \\ 0 & 0 & f_{36} \end{bmatrix} \quad \text{and} \quad \bar{T}_{4} = \begin{bmatrix} 0 & f_{12} & f_{11} \\ f_{24} & 0 & f_{21} \\ f_{34} & f_{32} & 0 \end{bmatrix}.$$

(3.2)

Since $\bar{T}_i \text{diag}(u_{i_1}, u_{i_2}, u_{i_3})$ is alternating where $u_{i_k} \in \{\pm 1\}$, we have the following identities

$$(3.3) \begin{array}{l} f_{24} = f_{46} \text{ or } -f_{46}, \ f_{25} = f_{36} \text{ or } -f_{36}, \ f_{34} = f_{45} \text{ or } -f_{45}, \\ f_{12} = f_{46} \text{ or } -f_{46}, \ f_{13} = f_{36} \text{ or } -f_{36}, \ f_{32} = f_{43} \text{ or } -f_{43}, \\ f_{11} = f_{45} \text{ or } -f_{45}, \ f_{13} = f_{25} \text{ or } -f_{25}, \ f_{21} = f_{43} \text{ or } -f_{43}, \\ f_{11} = f_{34} \text{ or } -f_{34}, \ f_{12} = f_{24} \text{ or } -f_{24}, \ f_{21} = f_{32} \text{ or } -f_{32}. \end{array}$$

Thus (3.2) and (3.3) give us

(3.4)

det
$$\bar{S}_1 = f_{21}f_{32}f_{43} = f_{21}^3$$
 or $-f_{21}^3$, det $\bar{S}_2 = f_{11}f_{34}f_{45} = f_{11}^3$ or $-f_{11}^3$,
det $\bar{S}_3 = f_{12}f_{24}f_{46} = f_{12}^3$ or $-f_{12}^3$, det $\bar{S}_4 = f_{13}f_{25}f_{36} = f_{13}^3$ or $-f_{13}^3$,
ed

(3.5)
$$Pf_2(\mathcal{A}(\bar{T}_1)) = (f_{11}, f_{12}, f_{13}), Pf_2(\mathcal{A}(\bar{T}_2)) = (f_{21}, f_{13}, f_{12}), Pf_2(\mathcal{A}(\bar{T}_3)) = (f_{21}, f_{13}, f_{11}), Pf_2(\mathcal{A}(\bar{T}_4)) = (f_{21}, f_{12}, f_{11}).$$

Hence

(3.6)
$$\operatorname{Pf}_2(\mathcal{A}(\bar{T}_i)) \subseteq \mathcal{K}_3(f) = (f_{21}, f_{11}, f_{12}, f_{13}) \text{ for } i = 1, 2, 3, 4.$$

Thus we obtain the structure theorem for complete intersections of grade 4.

Theorem 3.7 ([4]). Let R be a Noetherian local ring with maximal ideal \mathfrak{m} .

(1) Let F and G be free R-modules with rank F = 6 and rank G = 4. Let $f = (f_{ij}) : F \to G$ be a complete matrix of grade 4 such that Im $f \subseteq \mathfrak{m}G$. With the notation as in Theorem 3.5, we assume that $\operatorname{Pf}_2(\mathcal{A}(\overline{T}_i)) + \operatorname{Pf}_2(\mathcal{A}(\overline{T}_j))$ has grade 4 for some $i, j(i \neq j)$. Then the ideal $\mathcal{K}_3(f)$ is a complete intersection of grade 4.

(2) Let $I = (x_1, x_2, x_3, x_4)$ be a complete intersection of grade 4 and let

$$\mathbb{F}: 0 \longrightarrow R \xrightarrow{\varphi_4} R^4 \xrightarrow{\varphi_3} R^6 \xrightarrow{\varphi_2} R^4 \xrightarrow{\varphi_1} R$$

be the minimal free resolution of R/I. Then φ_2 and the transpose of φ_3 satisfy the part (1).

4. Complete intersections of grade g > 4

In this section we construct the ideal $\mathcal{K}_g(f)$ associated with a complete matrix f of grade g > 3 and provide a structure theorem for complete intersections of grade g > 3. We begin this section with easy lemmas.

Lemma 4.1. Let R be a Noetherian local ring with maximal ideal \mathfrak{m} . For any positive integer g > 3, let $\mathbf{x} = x_1, x_2, \ldots, x_g$ and $\mathbf{y}_i = x_1, x_2, \ldots, \hat{x_i}, \ldots, x_g$ be regular sequences on R, where \hat{x}_i indicates that x_i is to be omitted. Let $\mathbb{K}(\mathbf{x})$ and $\mathbb{K}(\mathbf{y}_i)$ be the Koszul complexes of $R/(\mathbf{x})$ and $R/(\mathbf{y}_i)$ for each $i = 1, 2, 3, \ldots, g$. Let

$$\mathbb{K}(x_i): 0 \longrightarrow R \xrightarrow{x_i} R$$

be a complex of free R-modules and R-maps. Then

(1) $\mathbb{K}(\mathbf{x}) \cong \mathbb{K}(x_i) \otimes \mathbb{K}(\mathbf{y}_i).$

(2) Let

$$\mathbb{K}(\mathbf{y}_i): 0 \longrightarrow F_{g-1} \xrightarrow{\varphi_{ig-1}} F_{g-2} \xrightarrow{\varphi_{ig-2}} \cdots \xrightarrow{\varphi_{ig}} F_1 \xrightarrow{\varphi_{i1}} R ,$$

and

$$\mathbb{K}(x_i) \otimes \mathbb{K}(\mathbf{y}_i) : 0 \longrightarrow R \otimes F_{g-1} \xrightarrow{\phi_{ig}} R \otimes F_{g-2} \oplus R \otimes F_{g-1} \xrightarrow{\phi_{ig-1}} R \otimes F_{g-$$

$$\cdots \xrightarrow{\phi_{i2}} R \otimes R \oplus R \otimes F_1 \xrightarrow{\phi_{i1}} R \otimes R$$

Then we have (4.1)

$$\phi_{i1} = \begin{bmatrix} x_i & \varphi_{i1} \end{bmatrix}, \quad \phi_{ik} = \frac{\begin{bmatrix} (-1)^{k-1}\varphi_{ik-1} & 0 \\ \hline x_iI & \varphi_{ik} \end{bmatrix}}{x_iI} \quad for \quad k = 2, 3, \dots, g-1,$$

$$\phi_{ig} = \begin{bmatrix} \varphi_{ig-1} \\ -x_i \end{bmatrix}.$$
Proof. Clear.

Proof. Clear.

Lemma 4.2. With the notation as above, let $t = \binom{g}{2}$. Then, for each i

- (1) Every column of ϕ_{i2} has exactly two nonzero entries.
- (2) The number of nonzero rows in each $g \times 2$ submatrix of ϕ_{i2} is greater than 2, that is, 3 or 4.

Proof. This follows from the matrix form of ϕ_{i2} (see (2.1) and (2.2)).

Now we can describe the special properties of ϕ_{i2} in (4.1).

Proposition 4.3. With the notation as above and hypotheses:

(1) ϕ_{i2} has g disjoint pairs (S_k, T_k) of a $g \times (g-1)$ submatrix S_k and a $g \times (t - g + 1)$ submatrix T_k ;

(2) By removing the *i*th row and interchanging columns of ϕ_{i2} , each pair (S_k, T_k) can be reduced to a pair (\bar{S}_k, \bar{T}_k) , where \bar{S}_k is a $(g-1) \times (g-1)$ diagonal matrix whose determinant is x_k^{g-1} , up to sign, and \bar{T}_k is the second differential map in the Koszul complex $\mathbb{K}(\mathbf{y}_k)$.

Proof. (1) The first statement follows from the second statement.

(2) It is enough to prove the case i = 1. For the sake of simplicity, ϕ_{12} can be written as the form

(4.2)
$$\phi_{12} = \frac{\begin{vmatrix} -\varphi_{11} & 0 \\ x_1 I & \varphi_{12} \end{vmatrix}.$$

Let $S_1 = \phi_{12}(1, 2, \dots, g \mid 1, 2, \dots, g - 1)$ and $T_1 = \phi_{12}(1, 2, \dots, g \mid g, g + 1)$ $1, \ldots, t$). Then clearly, S_1 and T_1 are disjoint. Taking $\bar{S}_1 = x_1 I$ and $\bar{T}_1 = \varphi_{12}$ as submatrices of ϕ_{12} , it is clear that det $\bar{S}_1 = (x_1)^{g-1}$ and \bar{T}_1 is the second differential map in the Koszul complex $\mathbb{K}(\mathbf{y}_1)$. Let k > 1 be an integer with $2 \leq k \leq g$. It follows from Lemma 4.2 that every row of ϕ_{12} consists of exactly g-1 nonzero entries and exactly t-g+1 zero entries. Choose S_k to be a $g \times (g-1)$ submatrix of ϕ_{12} such that all the entries of the kth row are nonzero, and T_k to be a $g \times (t - g + 1)$ submatrix of ϕ_{12} such that all the entries of the kth row are zero. Then clearly S_k and T_k are disjoint. Let S'_k and T'_k be the submatrices of S_k and T_k obtained by removing the kth row of S_k and T_k , respectively. By the part (1) of Lemma 4.2, every column of S'_k has exactly one

665

nonzero entry. We observe from (4.2) that the nonzero entry in the *l*th column of S'_k is either x_k or $-x_k$ for $l = 1, 2, \ldots, g - 1$. The part (2) of Lemma 4.2 implies that every row of S'_k has exactly one nonzero entry. This implies that interchanging columns of S'_k produces a $(g-1) \times (g-1)$ diagonal matrix \bar{S}_k whose main diagonal entries are either x_k or $-x_k$. Thus det $\bar{S}_k = \pm x_k^{g-1}$. It follows from the construction of T'_k and Lemma 4.2 that every column of T'_k has exactly two nonzero entries and the number of nonzero rows in each $(g-1) \times 2$ submatrix of T'_k is 3. Since T'_k has $t - g + 1 = {g-1 \choose 2}$ columns and g - 1 rows, interchanging columns of T'_k (if necessary) gives us the second differential map \bar{T}_k in the Koszul complex $\mathbb{K}(\mathbf{y}_k)$ (see (4.2)). Actually, \bar{T}_k has the form

$$\bar{T}_k = \frac{\begin{vmatrix} h_k & 0 \\ \\ d_1 & h'_k \end{vmatrix},$$

where

$$h_k = \begin{bmatrix} -x_2 & -x_3 & \cdots & -\widehat{x_k} & \cdots & -x_g \end{bmatrix},$$

$$d_1 = \text{diag}(x_1, x_1, \dots, x_1),$$

$$h'_k = \text{the second differential map in the Koszul complex } \mathbb{K}(\mathbf{y}_{1k}) \text{ for}$$

$$\mathbf{y}_{1k} = x_2, x_3, \dots, \widehat{x_k}, \dots, x_g.$$

Thus we have the desired one \overline{T}_k .

To define the ideal $\mathcal{K}_{g-1}(\phi_{i2})$ associated with the map ϕ_{i2} we need further properties of ϕ_{i2} .

Theorem 4.4. (1) With the notation as in Proposition 4.3, for each $k (1 \le k \le g)$, a pair (\bar{S}_k, \bar{T}_k) of matrices given in Proposition 4.3 is uniquely determined. (2) If for each $k, \mathcal{K}_{g-2}(\bar{T}_k)$ is the ideal generated by the elements $x_1, x_2, \ldots, \widehat{x_k}, \ldots, x_g$ given in the proof of Proposition 4.3, then $\mathcal{K}_{g-2}(\bar{T}_k)$ has grade g-1.

Proof. (1) This follows from Lemma 4.2.

(2) The second part is also clear since $x_1, x_2, \ldots, \hat{x_k}, \ldots, x_g$ is a regular sequence on R.

Thus Theorem 4.4 enables us to define a complete matrix of grade g. With an induction argument, we may call \overline{T}_k given in Theorem 4.4 the complete matrix of grade g - 1 in the following sense.

Definition 4.5. Let R be a commutative ring with identity. Let g > 3 and $t = \binom{g}{2}$ be integers. A $g \times t$ matrix $f = (f_{ij})$ over R is said to be *complete of grade g* if

(1) f has g disjoint pairs (S, T) of a $g \times (g-1)$ submatrix S and a $g \times (t-g+1)$ submatrix T;

(2) By removing a row and interchanging columns, each pair (S,T) can be reduced to a pair (\bar{S},\bar{T}) , where \bar{S} is a $(g-1) \times (g-1)$ diagonal matrix with

П

 $det(\bar{S}) = x^{g-1}$ for some $x \in R$, and \bar{T} is the complete matrix of grade g-1 with grade $\mathcal{K}_{g-2}(\bar{T}) = g-1$.

The following example illustrates Definition 4.5.

Example 4.6. Let x, y, z, u, w be a regular sequence in a Noetherian local ring R. Let

	$\int y$	z	u	w	0	0	0	0	0	0]	
	-x	0	0	0	z	u	w	0	0	0	
f =	0	-x	0	0	-y	0	0	u	w	0	
	0	0	-x	0	0	-y	0	-z	0	w	
	0	0	0	-x	0	0	-y	0	-z	-u	

The similar argument as in Example 3.4 shows that f satisfies the properties in Proposition 4.3 and the part (2) of Theorem 4.4.

The following theorem is an easy generalization of Theorem 3.5.

Theorem 4.7. Let g > 3 and $t = \binom{g}{2}$ be integers. A $g \times t$ matrix $f = (f_{ij})$ over R is a complete matrix of grade g.

- (1) Every column of f has exactly two nonzero entries.
- (2) The number of nonzero rows in each $g \times 2$ submatrix of f is greater than 2.
- (3) Each pair (\bar{S}, \bar{T}) of matrices given in Definition 4.5 is uniquely determined.

Proof. The proofs are essentially similar with those of Theorem 3.5. \Box

Now we define an ideal $\mathcal{K}_{g-1}(f)$ generated by the entries in the $(g-1)\times(g-1)$ matrices \bar{S} derived from a given complete matrix f of grade g in Theorem 4.7.

Definition 4.8. Let g > 3 and $t = \binom{g}{2}$ be integers. Let f be a $g \times t$ complete matrix of grade g. For $i = 1, 2, \ldots, g$, we let \overline{S}_i be a unique $(g - 1) \times (g - 1)$ diagonal matrix extracted from f in the part (3) of Theorem 4.7 such that det $\overline{S}_i = x_i^{g-1}$ is nonzero for some $x_i \in R$. We define $\mathcal{K}_{g-1}(f)$ to be the ideal generated by the x_i 's, that is,

$$\mathcal{K}_{g-1}(f) = (x_1, x_2, \dots, x_g)$$

Let $f = (f_{ij})$ be a $g \times t$ complete matrix of grade g. It follows from the properties (1) and (2) of Theorem 4.7 that interchanging columns of f transforms f to the following form.

(4.3)
$$f = \frac{\begin{vmatrix} h_1 & 0 \\ \\ d_1 & h_2 \end{vmatrix},$$

where

 $h_1 = \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1g-1} \end{bmatrix}, \\ d_1 = \text{diag}(f_{21}, f_{32}, \dots, f_{gg-1}), \quad h_2 = \text{a complete matrix of grade } g - 1.$

By applying the method of (3.5) and (3.6) in the case of a complete matrix of grade 4 to the given f, we have

$$\mathcal{K}_{g-2}(\bar{T}_1) = (\hat{f}_{21}, f_{11}, f_{12}, \dots, f_{1g-1}), \text{ and}$$

(4.4) $\mathcal{K}_{g-2}(\bar{T}_i) = (f_{21}, f_{11}, f_{12}, \dots, \widehat{f}_{1\,i-1}, f_{1i}, \dots, f_{1\,g-1})$ for $i = 2, 3, \dots, g$,

where \widehat{f}_{1i} indicates that f_{1i} is to be omitted.

Hence

(4.5)
$$\mathcal{K}_{g-2}(\bar{T}_i) \subseteq \mathcal{K}_{g-1}(f) = (f_{21}, f_{11}, f_{12}, \dots, f_{1g-1})$$
 for each *i*.

The following lemma will be used in proving the structure theorem for complete intersections of grade g > 3.

Lemma 4.9. Let $\mathbf{x} = x_1, x_2, \ldots, x_g$ be a regular sequence on R and \mathbb{F} a minimal free resolution of $R/(\mathbf{x})$. If φ_2 is the second differential map of \mathbb{F} , then φ_2 is a complete matrix of grade g.

Proof. Let $\mathbb{K}(\mathbf{x})$ be the Koszul complex defined by the regular sequence $\mathbf{x} = x_1, x_2, \ldots, x_g$ and d_2 the second differential map in $\mathbb{K}(\mathbf{x})$. We have shown in Proposition 4.3 and the part (2) of Theorem 4.4 that d_2 is a complete matrix of grade g. Let F be the free R-module with the ordered basis $\{e_1 < e_2 < \cdots < e_g\}$. Then $\wedge^2 F$ is a free R-module with the ordered basis $\{e_1 \land e_2 < e_1 \land e_3 < \cdots < e_{g-1} \land e_g\}$. Let $t = \binom{g}{2}$ be an integer. Let

$$\mathbb{F}: 0 \longrightarrow F_g \xrightarrow{\varphi_g} F_{g-1} \xrightarrow{\varphi_{g-1}} \cdots \xrightarrow{\varphi_3} F_2 \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} R$$

be the minimal free resolution of $R/(\mathbf{x})$ such that F_1 and F_2 are free *R*-modules with the ordered bases $\{v_1 < v_2 < \cdots < v_g\}$ and $\{w_1 < w_2 < \cdots < w_t\}$, respectively. Then we have a commutative diagram

$$\begin{array}{c} \wedge^2 F \xrightarrow{d_2} \wedge^1 F \\ \downarrow^{\psi_2} & \bigcirc & \downarrow^{\psi_1} \\ F_2 \xrightarrow{\varphi_2} & F_1 \end{array}$$

where ψ_1 and ψ_2 are order preserving isomorphisms as free *R*-modules. Since $\psi_1(e_k) = v_k$ for $k = 1, 2, \ldots, g$ and ψ_2 maps the *i*th basis element in $\wedge^2 F$ to the *i*th basis element w_i in F_2 for $i = 1, 2, \ldots, t$, the commutativity implies that d_2 and φ_2 have the same matrix representation. Thus φ_2 is a complete matrix of grade g since d_2 is a complete matrix of grade g.

Now we can describe a structure theorem for complete intersections of grade g > 3.

Theorem 4.10. Let R be a Noetherian local ring with maximal ideal \mathfrak{m} .

(1) Let g > 3 be an integer and $t = \binom{g}{2}$. Let F and G be free R-modules with rank F = g and rank G = t. Let $f = (f_{ij}) : G \to F$ be a complete matrix of

grade g whose image is contained in mF. With the notation as in Theorem 4.7, we assume that $\mathcal{K}_{g-2}(\bar{T}_i) + \mathcal{K}_{g-2}(\bar{T}_j)$ has grade g for some $i, j(1 \leq i \neq j \leq g)$. Then the ideal $\mathcal{K}_{g-1}(f)$ is a complete intersection of grade g.

(2) Let $I = (x_1, x_2, ..., x_g)$ be a complete intersection of grade g and let (4.6)

 $\mathbb{F}: 0 \longrightarrow R \xrightarrow{\varphi_g} F_{g-1} \xrightarrow{\varphi_{g-1}} F_{g-2} \longrightarrow \cdots \longrightarrow F_2 \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} R$

be the minimal free resolution of R/I. Then φ_2 and the transpose of φ_{g-1} satisfy (1).

Proof. (1) We showed in Theorem 3.7 that the first part of the theorem is true for the case of g = 4. Let $f = (f_{ij})$ be a $g \times t$ complete matrix of grade g. As shown in Proposition 4.3, interchanging columns of f transforms f to the form of (4.3). So we may assume that f has the form of (4.3). Then we have

(4.7)
$$\mathcal{K}_{g-1}(f) = (f_{21}, f_{11}, f_{12}, \dots, f_{1\,g-1}).$$

Since $\mathcal{K}_{g-2}(\bar{T}_i) + \mathcal{K}_{g-2}(\bar{T}_j)$ has grade g for some $i, j(i \neq j)$, it follows from (4.4) and (4.5) that $\mathcal{K}_{g-1}(f)$ is a complete intersection of grade g. Let $\mathbf{x} = f_{21}, f_{11}, f_{12}, \ldots, f_{1\,g-1}$. Then $\mathbf{y}_1 = \hat{f}_{21}, f_{11}, f_{12}, \ldots, f_{1\,g-1}$ and each $\mathbf{y}_i = f_{21}, f_{11}, f_{12}, \ldots, \hat{f}_{1\,i-1}, \ldots, f_{1\,g-1}$ for i > 1 are regular sequences. From (4.4), f_{21} is regular on $R/\mathcal{K}_{g-2}(\bar{T}_1)$, and f_{1i-1} is regular on $R/\mathcal{K}_{g-2}(\bar{T}_i)$ for i > 1. Let \mathbb{G}_i be a complex of free R-modules such that

$$\mathbb{G}_1: 0 \longrightarrow R \xrightarrow{f_{21}} R ,$$

and for i > 1,

$$\mathbb{G}_i: 0 \longrightarrow R \xrightarrow{f_{1i-1}} R .$$

Then by the part (1) of Lemma 4.1, $\mathbb{G}_i \otimes \mathbb{K}(\mathbf{y}_i)$ is a minimal free resolution of $R/\mathcal{K}_{g-1}(f)$.

(2) We showed in Theorem 3.7 that the part (2) holds for the case of g = 4. Let $I = (x_1, x_2, \ldots, x_g)$ be a complete intersection of grade g and $I' = (x_2, x_3, \ldots, x_g)$ be a complete intersection of grade g - 1. The same argument as in the proof of the part (2) of Theorem 3.7 says that φ_2 in (4.6) is of the form

$$\varphi_2 = \frac{\begin{vmatrix} \tilde{\varphi}_1 & 0 \\ \\ d & \tilde{\varphi}_2 \end{vmatrix},$$

where

$$\tilde{\varphi}_1 = \begin{bmatrix} -x_2 & -x_3 & \cdots & -x_g \end{bmatrix}, \quad \tilde{d} = \operatorname{diag}(x_1, x_1, \dots, x_1),$$

and $\tilde{\varphi}_2$ is the second differential map of the minimal free resolution of R/I'. Lemma 4.9 says that $\tilde{\varphi}_2$ is a complete matrix of grade g-1. Since x_1, x_2, \ldots, x_g is a regular sequence on R, Lemma 4.9 implies that φ_2 is a complete matrix of grade g. We observe that every row of φ_2 consists of g-1 nonzero entries and

t-g+1 zero entries. The similar argument as in the proof of Proposition 4.3 gives us the following : Let (\bar{S}_i, \bar{T}_i) be a pair of a $(g-1) \times (g-1)$ diagonal matrix and a $(g-1) \times (t-g+1)$ complete matrix of grade g-1. Then for $i = 1, 2, \ldots, g$,

det
$$\bar{S}_i = \pm x_i^{g-1}$$
, $\mathcal{K}_{g-2}(\bar{T}_i) = (x_1, x_2, \dots, \widehat{x}_i, x_{i+1}, \dots, x_g)$.

So we have

 $\mathcal{K}_{g-1}(\varphi_2) = (x_1, x_2, \dots, x_g), \text{ and } \mathcal{K}_{g-2}(\bar{T}_i) + \mathcal{K}_{g-2}(\bar{T}_j) = \mathcal{K}_{g-1}(\varphi_2)$ for some $i \neq j$.

We know that each $\mathcal{K}_{g-2}(\bar{T}_i)$ has grade g-1, and $\mathcal{K}_{g-1}(\varphi_2)$ is a complete intersection of grade g. Hence φ_2 satisfies the part (1) of Theorem 4.10. Since every complete intersection is Gorenstein, $\mathbb{F} \cong \mathbb{F}^*$ as complexes. So \mathbb{F}^* is the minimal free resolution of R/I. The same argument as in the proof of the part (2) of Theorem 3.7 for $\mathbb{K}(\mathbf{x})$ and \mathbb{F}^* gives us the proof that the transpose of φ_{g-1} is a complete matrix of grade g.

It should be noticed that Theorem 3.7 is just the special case of g = 4 in Theorem 4.10. The following example illustrates how Theorem 4.10 works.

Example 4.11. Let \mathbb{C} be the field of the complex numbers and R the formal power series ring $\mathbb{C}[[x_{ij}, y, z, w, u| 1 \leq i, j \leq 3]]$ over \mathbb{C} with indeterminates x_{ij}, y, z, w, u . Consider a 3×3 matrix X and a 3×3 alternating matrix Y

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & w & z \\ -w & 0 & y \\ -z & -y & 0 \end{bmatrix}.$$

Define

$$Z_1 = \sum_{i=1}^3 Y_i x_{i1}, \quad Z_2 = \sum_{i=1}^3 Y_i x_{i2}, \quad Z_3 = \sum_{i=1}^3 Y_i x_{i3}, \quad v = \det X.$$

Then $I = (Z_1, Z_2, Z_3, v)$ is an almost complete intersection of grade 3 of type 3 [1, 5]. Assume that $\mathbf{z} = Z_1, Z_2, Z_3$ is a regular sequence on R. Then

$$J = (\mathbf{z}) : I = (Y_1, Y_2, Y_3) = (y, z, w).$$

Since v is not contained in the ideal $J, I \cap J = (\mathbf{z})$. Hence I is geometrically linked to J by a regular sequence \mathbf{z} . Thus by Theorem 2.3, K = I + J = (y, z, w, v) is a complete intersection of grade 4. So $\mathbf{x} = y, z, w, v$ is a regular sequence on R. We may assume that u is a regular element on R/K. Thus H = (y, z, w, v, u) is a complete intersection of grade 5. Let

$$\mathbb{K}(u): 0 \longrightarrow R \xrightarrow{u} R$$

be a complex of free *R*-modules and *R*-maps. Then $\mathbb{H} = \mathbb{K}(u) \otimes \mathbb{K}(\mathbf{x})$ described as in the part (2) of Lemma 4.1 is the minimal free resolution of R/H. Let ϕ_2 be the second differential map in \mathbb{H} . Since y, z, w, v, u is a regular sequence

on R, by Lemma 4.9, ϕ_2 is a complete matrix of grade 5. It is easy to show that $\mathcal{K}_4(\phi_2) = (u, y, z, w, v)$ is a complete intersection of grade 5. Moreover, we let \overline{T}_i be a 4×6 complete matrix of grade 4 with the same notation, \overline{T}_i in Definition 4.5. Then we have

$$\begin{split} \mathcal{K}_3(\bar{T}_1) &= (y, z, w, v), \quad \mathcal{K}_3(\bar{T}_2) = (u, z, w, v), \quad \mathcal{K}_3(\bar{T}_3) = (u, y, w, v), \\ \mathcal{K}_3(\bar{T}_4) &= (u, y, z, v), \quad \mathcal{K}_3(\bar{T}_5) = (u, y, z, w). \end{split}$$

Hence $\mathcal{K}_3(\bar{T}_i) + \mathcal{K}_3(\bar{T}_j) = \mathcal{K}_4(\phi_2)$ for some $i \neq j$. This illustrates the Theorem 4.10.

References

- A. Brown, A structure theorem for a class of grade three perfect ideals, J. Algebra 105 (1987), no. 2, 308–327.
- [2] D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), no. 3, 447–485.
- [3] L. Burch, On ideals of finite homological dimension in local rings, Proc. Cam. Phil. Soc. 64 (1968), 941–948.
- [4] O.-J. Kang and H. J. Ko, The structure theorem for complete intersections of grade 4, Algebra Colloq. 12 (2005), no. 2, 181–197.
- [5] A. Kustin and M. Miller, Structure theory for a class of grade four Gorenstein ideals, Trans. Amer. Math. Soc. 270 (1982), no. 1, 287–307.
- [6] C. Peskine and L. Szpiro, *Liaison des variétés algébriques. I*, Invent. Math. 26 (1974), 271–302.
- [7] R. Sánchez, A structure theorem for type 3, grade 3 perfect ideals, J. Algebra 123 (1989), no. 2, 263–288.

Eun Jeong Choi University College Yonsei University Seoul 120-749, Korea *E-mail address*: eunjchoi@yonsei.ac.kr

OH-JIN KANG DEPARTMENT OF MATHEMATICS SCIENCE COLLEGE UNIVERSITY OF INCHEON INCHEON 402-749, KOREA *E-mail address*: ohkang@incheon.ac.kr

Hyoung J. Ko Department of Mathematics Yonsei University Seoul 120-749, Korea *E-mail address*: hjko@yonsei.ac.kr