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A STRUCTURE THEOREM
FOR COMPLETE INTERSECTIONS

Eun Jeong Choi, Oh-Jin Kang, and Hyoung J. Ko

Abstract. Buchsbaum and Eisenbud proved a structure theorem for
Gorenstein ideals of grade 3. In this paper we derive a class of the perfect
ideals from a class of the complete matrices. From this we give a structure
theorem for complete intersections of grade g > 3.

1. Introduction

Let R be a Noetherian local ring and I a perfect ideal of grade g in R. Many
people have been studying the algebra structure on the minimal free resolution
of R/I, in particular, Gorenstein ideals, the ideals of type 1. In 1968, Burch
[3] characterized perfect ideals of grade 2 by showing a structure theorem due
to Hilbert in a special case: every perfect ideal of grade 2 generated by n
elements is the ideal of (n − 1)st order minors of an (n − 1) × n matrix. In
1977, Buchsbaum and Eisenbud [2] gave a structure theorem for Gorenstein
ideals of grade 3 which says that every Gorenstein ideal of grade 3 in R is
generated by the maximal order Pfaffians of an alternating matrix. However
a structure theorem for Gorenstein ideals of grade 4 is more complicated than
that of grade 3 and not completely known. In 1987, Brown [1] described a
structure theorem for a certain class of perfect ideals I which have grade 3,
type 2 and λ(I) = dimkΛ2

1 > 0, where λ(I) is a numerical invariant defined in
[5]. In 1989, Sanchez [7] gave a structure theorem for type 3, grade 3 perfect
ideals which have λ(I) = dimkΛ2

1 = 2 or greater. In this paper we will describe
a structure theorem for complete intersections of grade g > 3, which says that
every complete intersection of grade g > 3 in R is generated by the elements
xi’s, where xg−1

i is the determinant of the (g − 1) × (g − 1) diagonal matrix
drawn from a complete matrix of grade g for each i (1 ≤ i ≤ g).

In Section 2 we review some of the properties of alternating matrices, linkage
theory, and a structure theorem for Gorenstein ideals of grade 3.

In Section 3 we give the concept of a complete matrix of grade 4 and provide
a structure theorem for complete intersections of grade 4.
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In Section 4 we introduce a complete matrix f of grade g > 3, and de-
fine the ideal Kg−1(f) associated with f . Then we prove a structure theorem
for complete intersections of grade g > 3. The structure theorem [4] for com-
plete intersections of grade 4 is just a special case of our main Theorem 4.10.
Throughout this paper, we assume that all rings are a Noetherian local ring
with maximal ideal m unless otherwise stated.

2. Gorenstein ideals of grade 3

The grade of a proper ideal I in R is the length of the maximal R-sequence
contained in I. We say that an ideal I of grade g is perfect if grade I =
prodimR(R/I) = g. If I is a perfect ideal of grade g, then the type of I is
defined to be the dimension of the R/m-vector space ExtgR(R/m, R/I). A per-
fect ideal I of grade g is Gorenstein if type I = 1, equivalently, if F is the
minimal free resolution of R/I,

F : 0 // Fg
ϕg // Fg−1

ϕg−1 // . . . ϕ2 // F1
ϕ1 // F0(= R) ,

then the rank of Fg is 1. A perfect ideal I of grade g is a complete intersection
if it is generated by g elements, and is an almost complete intersection if it is
minimally generated by g + 1 elements.

Let R be a commutative ring, and F a finite free R-module. An R-module
homomorphism ϕ : F → F ∗ is said to be alternating if with respect to some
(and therefore any) basis of F and the corresponding dual basis of F ∗, the
matrix ϕ is alternating, i.e., skew-symmetric and all its diagonal entries are 0.
Now suppose that ϕ is alternating, choose a basis of F and the corresponding
dual basis of this, and identify ϕ with the corresponding matrix (ϕij). If rankF
is odd, then detϕ = 0, and if rankF is even, then there exists an element
Pf(ϕ) ∈ R, called the Pfaffian of ϕ, which is a polynomial function of the
entries of ϕ, such that detϕ = Pf(ϕ)2. We set Pf(ϕ) = 0 if rankF is odd.
Pfaffians can be developed along a row just like the determinants. Denote by
Pfr(ϕ) the ideal generated by the rth order Pfaffians of ϕ. With these concepts
Buchsbaum and Eisenbud gave a complete structure for Gorenstein ideals of
grade 3:

Theorem 2.1 ([2]). Let R be a Noetherian local ring with maximal ideal m.
(1) Let F be a free R-module with rankF = n, where n > 3 is an odd

integer. Let ϕ : F ∗ → F be an alternating map whose image is contained in
mF . Suppose that Pfn−1(ϕ) has grade 3. Then Pfn−1(ϕ) is a Gorenstein ideal
minimally generated by n elements.

(2) Every Gorenstein ideal of grade 3 arises as in (1).

Now we review some of the notions in the linkage theory formulated by Peskine
and Szpiro in [6].

Definition 2.2. Let I and J be two ideals in a Gorenstein ring R (not neces-
sarily local).



A STRUCTURE THEOREM FOR COMPLETE INTERSECTIONS 659

(1) If there exists an R-regular sequence ααα = α1, α2, . . . , αg in I ∩ J such
that J = (ααα) : I and I = (ααα) : J, then I and J are said to be linked (with
respect to ααα).

(2) If I and J are linked and if Ass(R/I) ∩Ass(R/J) = ∅, equivalently, if I
and J are linked (with respect to ααα) and if I ∩ J = (ααα), then I and J are said
to be geometrically linked.

Let R be a Gorenstein local ring of Krull dimension g with maximal ideal
m. If I and J are perfect ideals of grade g, then they are not geometrically
linked because (R/I) and (R/J) are both zero-dimensional artinian local rings.
Peskine and Szpiro gave a method of constructing a Gorenstein ideal of grade
g + 1 from two perfect ideals of grade g:

Theorem 2.3 ([6]). Let R be a Gorenstein local ring with maximal ideal m. Let
I and J be geometrically linked Cohen-Macaulay ideals of grade g by a regular
sequence x = x1, x2, . . . , xg and let K = I +J. Then K is a Gorenstein ideal of
grade g + 1.

Let F be a free R-module with a basis {e1, e2, . . . , en} and let I be an ideal
generated by a regular sequence x = x1, x2, . . . , xn. Let K(x) be the Koszul
complex defined by x = x1, x2, . . . , xn. Then

K(x) : 0 // ∧nF dn // ∧n−1F
dn−1 // . . . d2 // ∧1F

d1 // ∧0F

is the minimal free resolution of R/I, where d1(ei) = xi for each i with 1 6 i 6
n, and for each p with 1 6 p 6 n, dp : ∧pF → ∧p−1F is given by

(2.1) dp(ei1 ∧ ei2 ∧ · · · ∧ eip) =
p∑

j=1

(−1)j−1d1(eij )ei1 ∧ ei2 ∧ · · · ∧ êij ∧ · · · ∧ eip .

For example, if x = x1, x2, x3, x4, x5 is a regular sequence on R, then d2 has
the form

(2.2) d2 =




−x2 −x3 −x4 −x5 0 0 0 0 0 0
x1 0 0 0 −x3 −x4 −x5 0 0 0
0 x1 0 0 x2 0 0 −x4 −x5 0
0 0 x1 0 0 x2 0 x3 0 −x5

0 0 0 x1 0 0 x2 0 x3 x4



.

The exterior algebra ∧F is a graded Hopf algebra such that x∧y = (−1)pqy∧
x for x ∈ ∧pF and y ∈ ∧qF and x ∧ x = 0 for any homogeneous element x of
odd degree. It is well-known that the algebra structure on the Koszul complex
which gives the minimal free resolution of a complete intersection is an exterior
algebra.
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3. Complete intersections of grade 4

In this section we start with a skew-symmetrizable matrix, and a complete
matrix of grade 4 which play important roles in describing the complete inter-
sections of grade 4.

Definition 3.1. Let R be a commutative ring with identity. An n× n matrix
X = (xij) over R is said to be generalized alternating or skew-symmetrizable
if there exist nonzero n × n diagonal matrices D′ = diag(u1, u2, . . . , un) and
D = diag(w1, w2, . . . , wn) with entries in R such that D′XD is alternating. We
denote by GAn(R) the set of all skew-symmetrizable n× n matrices over R. If
there is no ambiguity about the ring R, then GAn(R) is denoted by GAn.

Notice that every alternating matrix is skew-symmetrizable. For an n × n
skew-symmetrizable matrix X, we denote A(X) to be an alternating matrix
D′XD for some diagonal matrices D′ and D. To define a complete intersection
of grade 4, we need to describe the submatrices of the given matrix in detail.
A p× q submatrix of an m×n matrix f is a matrix obtained from f by taking
the pq entries at the intersections of the i1th, i2th, . . . , ipth rows and the
j1th, j2th, . . . , jqth columns of f, where 1 ≤ i1 < i2 < · · · < ip ≤ m and
1 ≤ j1 < j2 < · · · < jq ≤ n. The corresponding p× q submatrix of f is denoted
by

f(i1, i2, . . . , ip|j1, j2, . . . , jq).
Notice that the p × q matrix f(i1, i2, . . . , ip|j1, j2, . . . , jq) consisting of the pq
entries at the intersection of these rows and columns of f could not be a sub-
matrix of f unless 1 ≤ i1 < i2 < · · · < ip ≤ m and 1 ≤ j1 < j2 < · · · < jq ≤ n.
Next we get into the skew-symmetrizable matrices and the special properties
of the second differential map d2 of the Koszul complex K(x)

K(x) : 0 // ∧4F
d4 // ∧3F

d3 // ∧2F
d2 // ∧1F

d1 // ∧0F

defined by a regular sequence x = x1, x2, x3, x4 on R. With respect to the
standard basis of F, d2 has the following form

d2 =




−x2 −x3 −x4 0 0 0
x1 0 0 −x3 −x4 0
0 x1 0 x2 0 −x4

0 0 x1 0 x2 x3


 .

Proposition 3.2. With the notation as above, the second differential map d2

of the Koszul complex satisfies the following properties:
(1) There are four disjoint pairs (S, T ) of two 4× 3 submatrices of d2;
(2) By removing a row and interchanging columns, each pair (S, T ) can be

reduced to a pair (S̄, T̄ ) of 3×3 matrices such that S̄ is a diagonal matrix whose
determinant is the nonzero 3rd power element x3 for some x ∈ R, and T̄ is a
skew-symmetrizable matrix with grade Pf2(A(T̄ )) = 3.
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Proof. Let S1 = d2(1, 2, 3, 4 | 1, 2, 3) and T1 = d2(1, 2, 3, 4 | 4, 5, 6) be the disjoint
4×3 submatrices of d2. Then the submatrix obtained by removing the first row
of S1 is a 3×3 diagonal matrix S̄1 whose determinant is equal to x3

1. Removing
the first row and interchanging columns 1 and 3 of T1, we have the 3×3 matrix
T̄1. Then T̄1 is skew-symmetrizable, since it becomes an alternating matrix by
multiplying the second column of it by −1. Since x2, x3, x4 is a regular sequence
on R, Pf2(A(T̄1)) = (x2, x3, x4) has grade 3. Similarly, we can take the disjoint
submatrices of d2;

S2 = d2(1, 2, 3, 4 | 1, 4, 5) and T2 = d2(1, 2, 3, 4 | 2, 3, 6),

S3 = d2(1, 2, 3, 4 | 2, 4, 6) and T3 = d2(1, 2, 3, 4 | 1, 3, 5),

S4 = d2(1, 2, 3, 4 | 3, 5, 6) and T4 = d2(1, 2, 3, 4 | 1, 2, 4).

The similar argument gives us the 3× 3 diagonal matrix S̄i whose determinant
is equal to x3

i or (−xi)3, and the 3×3 skew-symmetrizable matrix T̄i with grade
Pf2(A(T̄i)) = 3 for i = 2, 3, 4. ¤
Definition 3.3. Let R be a commutative ring with identity. A 4× 6 matrix f
over R is said to be a complete matrix of grade 4 if

(1) f has four distinct pairs (S, T ) of disjoint 4× 3 submatrices;
(2) By removing a row and interchanging columns, each pair (S, T ) is reduced

to a pair (S̄, T̄ ) of 3 × 3 matrices such that S̄ is a diagonal matrix whose
determinant is a nonzero 3rd power element x3 for some x ∈ R, and T̄ is a
skew-symmetrizable matrix with grade Pf2(A(T̄ )) = 3.

The following example illustrates Definition 3.3.

Example 3.4. Let x, y, z, and w be a regular sequence on a commutative ring
R. Let f be a 4× 6 matrix given by

f =




0 0 −y −w −z 0
0 −z x 0 0 −w
−w y 0 0 x 0
z 0 0 x 0 y


 .

Then f is a complete matrix of grade 4. To see this, we find four distinct
pairs of disjoint 4 × 3 submatrices Si and Ti of f satisfying the properties in
Proposition 3.2. First we consider two submatrices of f ;

S1 =




−y −w −z
x 0 0
0 0 x
0 x 0


 and T1 =




0 0 0
0 −z −w
−w y 0
z 0 y


 ,

that is, S1 = f(1, 2, 3, 4 | 3, 4, 5) and T1 = f(1, 2, 3, 4 | 1, 2, 6). So S1 and T1 are
disjoint. By removing the first row and interchanging the second and the third
columns of S1 and T1, we can get the 3 × 3 matrices S̄1 = S1(2, 3, 4|1, 3, 2)
and T̄1 = T1(2, 3, 4 | 1, 3, 2). Then S̄1 is a diagonal matrix whose determinant
is a nonzero element x3 and T̄1 is skew-symmetrizable since T̄1diag(1,−1, 1)
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is alternating. It is easy to show that Pf2(A(T̄1)) has grade 3. Similarly, we
consider the submatrices of f ;

S2 = f(1, 2, 3, 4 | 2, 3, 6) and T2 = f(1, 2, 3, 4 | 1, 4, 5),

S3 = f(1, 2, 3, 4 | 1, 2, 5) and T3 = f(1, 2, 3, 4 | 3, 4, 6),

S4 = f(1, 2, 3, 4 | 1, 4, 6) and T4 = f(1, 2, 3, 4 | 2, 3, 5).

Clearly, 4 × 3 submatrices Si and Ti of f are disjoint for i = 2, 3, 4. The
similar argument gives us the following 3× 3 matrices;

S̄2 = S2(1, 3, 4 | 2, 1, 3) and T̄2 = T2(1, 3, 4 | 1, 2, 3),

S̄3 = S3(1, 2, 4 | 3, 2, 1) and T̄3 = T3(1, 2, 4 | 3, 2, 1),

S̄4 = S4(1, 2, 3 | 2, 3, 1) and T̄4 = T4(1, 2, 3 | 1, 3, 2).

And det S̄2 = (−y)3, det S̄3 = z3 and det S̄4 = (−w)3 are nonzero 3rd power
elements and

Pf2(A(T̄1)) = (y, z, w), Pf2(A(T̄2)) = (x, z, w),

Pf2(A(T̄3)) = (x, y, w), Pf2(A(T̄4)) = (x, y, z).

Since x, y, z, w is a regular sequence on R, these four ideals have all grade 3.
Hence the properties in Proposition 3.2 are satisfied.

We notice that if f is a complete matrix of grade 4, then the matrix obtained
from f by interchanging rows of f also becomes a complete matrix of grade 4.

Theorem 3.5 ([4]). Let f = (fij) be a 4× 6 complete matrix of grade 4.

(1) Every column of f has exactly two nonzero entries.
(2) The number of nonzero rows in each 4 × 2 submatrix of f is greater

than 2.
(3) Each pair (S̄, T̄ ) of 3 × 3 matrices given in Definition 3.3 is uniquely

determined.

Now we will define an ideal K3(f) generated by the radical roots of the
determinants of the 3 × 3 diagonal matrices S̄ derived from a given complete
matrix f of grade 4 in Theorem 3.5.

Definition 3.6. Let f be a 4 × 6 complete matrix of grade 4. Let S̄i be a
unique 3 × 3 diagonal matrix reduced from the disjoint pair (Si, Ti) of f such
that det S̄i = x3

i is nonzero for i = 1, 2, 3, 4. We define K3(f) to be the ideal
generated by the xi’s, that is,

K3(f) = (x1, x2, x3, x4).

Next let us show that the ideal K3(f) defines a complete intersection of
grade 4. Let f be a complete matrix of grade 4. By Theorem 3.5 we may
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assume

f =




f11 f12 f13 0 0 0
f21 0 0 f24 f25 0
0 f32 0 f34 0 f36
0 0 f43 0 f45 f46


 .

Then we have

S̄1 = f(2, 3, 4|1, 2, 3) and T̄1 = f(2, 3, 4|6, 5, 4),

S̄2 = f(1, 3, 4|1, 4, 5) and T̄2 = f(1, 3, 4|6, 3, 2),

S̄3 = f(1, 2, 4|2, 4, 6) and T̄3 = f(1, 2, 4|5, 3, 1),

S̄4 = f(1, 2, 3|3, 5, 6) and T̄4 = f(1, 2, 3|4, 2, 1),

i.e.,

S̄1 =



f21 0 0
0 f32 0
0 0 f43


 and T̄1 =




0 f25 f24
f36 0 f34
f46 f45 0


 ,

S̄2 =



f11 0 0
0 f34 0
0 0 f45


 and T̄2 =




0 f13 f12
f36 0 f32
f46 f43 0


 ,

S̄3 =



f12 0 0
0 f24 0
0 0 f46


 and T̄3 =




0 f13 f11
f25 0 f21
f45 f43 0


 ,

S̄4 =



f13 0 0
0 f25 0
0 0 f36


 and T̄4 =




0 f12 f11
f24 0 f21
f34 f32 0


 .

(3.2)

Since T̄idiag(ui1 , ui2 , ui3) is alternating where uik ∈ {±1}, we have the fol-
lowing identities

f24 = f46 or − f46, f25 = f36 or − f36, f34 = f45 or − f45,

f12 = f46 or − f46, f13 = f36 or − f36, f32 = f43 or − f43,

f11 = f45 or − f45, f13 = f25 or − f25, f21 = f43 or − f43,

f11 = f34 or − f34, f12 = f24 or − f24, f21 = f32 or − f32.

(3.3)

Thus (3.2) and (3.3) give us

det S̄1 = f21f32f43 = f3
21 or − f3

21, det S̄2 = f11f34f45 = f3
11 or − f3

11,

det S̄3 = f12f24f46 = f3
12 or − f3

12, det S̄4 = f13f25f36 = f3
13 or − f3

13,

(3.4)

and
Pf2(A(T̄1)) = (f11, f12, f13), Pf2(A(T̄2)) = (f21, f13, f12),

Pf2(A(T̄3)) = (f21, f13, f11), Pf2(A(T̄4)) = (f21, f12, f11).
(3.5)
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Hence

(3.6) Pf2(A(T̄i)) ⊆ K3(f) = (f21, f11, f12, f13) for i = 1, 2, 3, 4.

Thus we obtain the structure theorem for complete intersections of grade 4.

Theorem 3.7 ([4]). Let R be a Noetherian local ring with maximal ideal m.
(1) Let F and G be free R-modules with rank F = 6 and rank G = 4. Let

f = (fij) : F → G be a complete matrix of grade 4 such that Im f ⊆ mG. With
the notation as in Theorem 3.5, we assume that Pf2(A(T̄i)) + Pf2(A(T̄j)) has
grade 4 for some i, j(i 6= j). Then the ideal K3(f) is a complete intersection of
grade 4.

(2) Let I = (x1, x2, x3, x4) be a complete intersection of grade 4 and let

F : 0 // R
ϕ4 // R4

ϕ3 // R6
ϕ2 // R4

ϕ1 // R

be the minimal free resolution of R/I. Then ϕ2 and the transpose of ϕ3 satisfy
the part (1).

4. Complete intersections of grade g > 4

In this section we construct the ideal Kg(f) associated with a complete ma-
trix f of grade g > 3 and provide a structure theorem for complete intersections
of grade g > 3. We begin this section with easy lemmas.

Lemma 4.1. Let R be a Noetherian local ring with maximal ideal m. For any
positive integer g > 3, let x = x1, x2, . . . , xg and yi = x1, x2, . . . , x̂i, . . . , xg be
regular sequences on R, where x̂i indicates that xi is to be omitted. Let K(x) and
K(yi) be the Koszul complexes of R/(x) and R/(yi) for each i = 1, 2, 3, . . . , g.
Let

K(xi) : 0 // R
xi // R

be a complex of free R-modules and R-maps. Then
(1) K(x) ∼= K(xi)⊗K(yi).
(2) Let

K(yi) : 0 // Fg−1
ϕi g−1 // Fg−2

ϕi g−2 // . . . ϕi 2 // F1
ϕi 1 // R ,

and

K(xi)⊗K(yi) : 0 // R⊗ Fg−1
φig // R⊗ Fg−2 ⊕R⊗ Fg−1

φig−1 //

. . . φi2 // R⊗R⊕R⊗ F1
φi1 // R⊗R.
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Then we have

φi1 =
[
xi ϕi1

]
, φik =




(−1)k−1ϕik−1 0

xiI ϕik


 for k = 2, 3, . . . , g − 1,

φig =
[
ϕig−1

−xi

]
.

(4.1)

Proof. Clear. ¤

Lemma 4.2. With the notation as above, let t =
(
g
2

)
. Then, for each i

(1) Every column of φi2 has exactly two nonzero entries.
(2) The number of nonzero rows in each g × 2 submatrix of φi2 is greater

than 2, that is, 3 or 4.

Proof. This follows from the matrix form of φi2 (see (2.1) and (2.2)). ¤

Now we can describe the special properties of φi2 in (4.1).

Proposition 4.3. With the notation as above and hypotheses:
(1) φi2 has g disjoint pairs (Sk, Tk) of a g × (g − 1) submatrix Sk and a

g × (t− g + 1) submatrix Tk;
(2) By removing the ith row and interchanging columns of φi2, each pair

(Sk, Tk) can be reduced to a pair (S̄k, T̄k), where S̄k is a (g − 1) × (g − 1)
diagonal matrix whose determinant is xg−1

k , up to sign, and T̄k is the second
differential map in the Koszul complex K(yk).

Proof. (1) The first statement follows from the second statement.
(2) It is enough to prove the case i = 1. For the sake of simplicity, φ12 can

be written as the form

(4.2) φ12 =



−ϕ11 0

x1I ϕ12


 .

Let S1 = φ12(1, 2, . . . , g | 1, 2, . . . , g − 1) and T1 = φ12(1, 2, . . . , g | g, g +
1, . . . , t). Then clearly, S1 and T1 are disjoint. Taking S̄1 = x1I and T̄1 = ϕ12

as submatrices of φ12, it is clear that det S̄1 = (x1)g−1 and T̄1 is the second
differential map in the Koszul complex K(y1). Let k > 1 be an integer with
2 ≤ k ≤ g. It follows from Lemma 4.2 that every row of φ12 consists of exactly
g − 1 nonzero entries and exactly t − g + 1 zero entries. Choose Sk to be a
g×(g−1) submatrix of φ12 such that all the entries of the kth row are nonzero,
and Tk to be a g × (t − g + 1) submatrix of φ12 such that all the entries of
the kth row are zero. Then clearly Sk and Tk are disjoint. Let S′k and T ′k be
the submatrices of Sk and Tk obtained by removing the kth row of Sk and Tk,
respectively. By the part (1) of Lemma 4.2, every column of S′k has exactly one
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nonzero entry. We observe from (4.2) that the nonzero entry in the lth column
of S′k is either xk or −xk for l = 1, 2, . . . , g − 1. The part (2) of Lemma 4.2
implies that every row of S′k has exactly one nonzero entry. This implies that
interchanging columns of S′k produces a (g − 1) × (g − 1) diagonal matrix S̄k
whose main diagonal entries are either xk or −xk. Thus det S̄k = ±xg−1

k . It
follows from the construction of T ′k and Lemma 4.2 that every column of T ′k has
exactly two nonzero entries and the number of nonzero rows in each (g−1)×2
submatrix of T ′k is 3. Since T ′k has t− g + 1 =

(
g−1
2

)
columns and g − 1 rows,

interchanging columns of T ′k (if necessary) gives us the second differential map
T̄k in the Koszul complex K(yk)(see (4.2)). Actually, T̄k has the form

T̄k =



hk 0

d1 h′k


 ,

where
hk =

[−x2 −x3 · · · −x̂k · · · −xg
]
,

d1 = diag(x1, x1, . . . , x1),

h′k = the second differential map in the Koszul complex K(y1k) for

y1k = x2, x3, . . . , x̂k, . . . , xg.

Thus we have the desired one T̄k. ¤

To define the ideal Kg−1(φi2) associated with the map φi2 we need further
properties of φi2.

Theorem 4.4. (1) With the notation as in Proposition 4.3, for each k (1 ≤ k ≤
g), a pair (S̄k, T̄k) of matrices given in Proposition 4.3 is uniquely determined.

(2) If for each k, Kg−2(T̄k) is the ideal generated by the elements x1, x2, . . . ,
x̂k, . . . , xg given in the proof of Proposition 4.3, then Kg−2(T̄k) has grade g−1.

Proof. (1) This follows from Lemma 4.2.
(2) The second part is also clear since x1, x2, . . . , x̂k, . . . , xg is a regular

sequence on R. ¤

Thus Theorem 4.4 enables us to define a complete matrix of grade g. With
an induction argument, we may call T̄k given in Theorem 4.4 the complete
matrix of grade g − 1 in the following sense.

Definition 4.5. Let R be a commutative ring with identity. Let g > 3 and
t =

(
g
2

)
be integers. A g × t matrix f = (fij) over R is said to be complete of

grade g if
(1) f has g disjoint pairs (S, T ) of a g×(g−1) submatrix S and a g×(t−g+1)

submatrix T ;
(2) By removing a row and interchanging columns, each pair (S, T ) can be

reduced to a pair (S̄, T̄ ), where S̄ is a (g − 1) × (g − 1) diagonal matrix with
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det(S̄) = xg−1 for some x ∈ R, and T̄ is the complete matrix of grade g − 1
with grade Kg−2(T̄ ) = g − 1.

The following example illustrates Definition 4.5.

Example 4.6. Let x, y, z, u, w be a regular sequence in a Noetherian local ring
R. Let

f =




y z u w 0 0 0 0 0 0
−x 0 0 0 z u w 0 0 0
0 −x 0 0 −y 0 0 u w 0
0 0 −x 0 0 −y 0 −z 0 w
0 0 0 −x 0 0 −y 0 −z −u



.

The similar argument as in Example 3.4 shows that f satisfies the properties
in Proposition 4.3 and the part (2) of Theorem 4.4.

The following theorem is an easy generalization of Theorem 3.5.

Theorem 4.7. Let g > 3 and t =
(
g
2

)
be integers. A g × t matrix f = (fij)

over R is a complete matrix of grade g.
(1) Every column of f has exactly two nonzero entries.
(2) The number of nonzero rows in each g × 2 submatrix of f is greater

than 2.
(3) Each pair (S̄, T̄ ) of matrices given in Definition 4.5 is uniquely deter-

mined.

Proof. The proofs are essentially similar with those of Theorem 3.5. ¤
Now we define an ideal Kg−1(f) generated by the entries in the (g−1)×(g−1)

matrices S̄ derived from a given complete matrix f of grade g in Theorem 4.7.

Definition 4.8. Let g > 3 and t =
(
g
2

)
be integers. Let f be a g × t complete

matrix of grade g. For i = 1, 2, . . . , g, we let S̄i be a unique (g − 1) × (g − 1)
diagonal matrix extracted from f in the part (3) of Theorem 4.7 such that
det S̄i = xg−1

i is nonzero for some xi ∈ R. We define Kg−1(f) to be the ideal
generated by the xi’s, that is,

Kg−1(f) = (x1, x2, . . . , xg).

Let f = (fij) be a g× t complete matrix of grade g. It follows from the prop-
erties (1) and (2) of Theorem 4.7 that interchanging columns of f transforms
f to the following form.

(4.3) f =



h1 0

d1 h2


 ,

where
h1 =

[
f11 f12 · · · f1g−1

]
,

d1 = diag(f21, f32, . . . , fg g−1), h2 = a complete matrix of grade g − 1.
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By applying the method of (3.5) and (3.6) in the case of a complete matrix of
grade 4 to the given f, we have

Kg−2(T̄1) = (f̂21, f11, f12, . . . , f1 g−1), and

Kg−2(T̄i) = (f21, f11, f12, . . . , f̂1 i−1, f1i, . . . , f1 g−1) for i = 2, 3, . . . g,

where f̂1i indicates that f1i is to be omitted.

(4.4)

Hence

(4.5) Kg−2(T̄i) ⊆ Kg−1(f) = (f21, f11, f12, . . . , f1 g−1) for each i.

The following lemma will be used in proving the structure theorem for com-
plete intersections of grade g > 3.

Lemma 4.9. Let x = x1, x2, . . . , xg be a regular sequence on R and F a mini-
mal free resolution of R/(x). If ϕ2 is the second differential map of F, then ϕ2

is a complete matrix of grade g.

Proof. Let K(x) be the Koszul complex defined by the regular sequence x =
x1, x2, . . . , xg and d2 the second differential map in K(x). We have shown in
Proposition 4.3 and the part (2) of Theorem 4.4 that d2 is a complete matrix
of grade g. Let F be the free R-module with the ordered basis {e1 < e2 < · · · <
eg}. Then ∧2F is a free R-module with the ordered basis {e1 ∧ e2 < e1 ∧ e3 <
· · · < eg−1 ∧ eg}. Let t =

(
g
2

)
be an integer. Let

F : 0 // Fg
ϕg // Fg−1

ϕg−1 // · · · ϕ3 // F2
ϕ2 // F1

ϕ1 // R

be the minimal free resolution of R/(x) such that F1 and F2 are free R-modules
with the ordered bases {v1 < v2 < · · · < vg} and {w1 < w2 < · · · < wt},
respectively. Then we have a commutative diagram

∧2F

ψ2

²²
©

d2 // ∧1F

ψ1

²²
F2

ϕ2 // F1

where ψ1 and ψ2 are order preserving isomorphisms as free R-modules. Since
ψ1(ek) = vk for k = 1, 2, . . . , g and ψ2 maps the ith basis element in ∧2F to the
ith basis element wi in F2 for i = 1, 2, . . . , t, the commutativity implies that d2

and ϕ2 have the same matrix representation. Thus ϕ2 is a complete matrix of
grade g since d2 is a complete matrix of grade g. ¤

Now we can describe a structure theorem for complete intersections of grade
g > 3.

Theorem 4.10. Let R be a Noetherian local ring with maximal ideal m.
(1) Let g > 3 be an integer and t =

(
g
2

)
. Let F and G be free R-modules with

rank F = g and rank G = t. Let f = (fij) : G → F be a complete matrix of
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grade g whose image is contained in mF. With the notation as in Theorem 4.7,
we assume that Kg−2(T̄i) +Kg−2(T̄j) has grade g for some i, j(1 ≤ i 6= j ≤ g).
Then the ideal Kg−1(f) is a complete intersection of grade g.

(2) Let I = (x1, x2, . . . , xg) be a complete intersection of grade g and let
(4.6)

F : 0 // R
ϕg // Fg−1

ϕg−1 // Fg−2 // . . . // F2
ϕ2 // F1

ϕ1 // R

be the minimal free resolution of R/I. Then ϕ2 and the transpose of ϕg−1 satisfy
(1).

Proof. (1) We showed in Theorem 3.7 that the first part of the theorem is true
for the case of g = 4. Let f = (fij) be a g × t complete matrix of grade g. As
shown in Proposition 4.3, interchanging columns of f transforms f to the form
of (4.3). So we may assume that f has the form of (4.3). Then we have

(4.7) Kg−1(f) = (f21, f11, f12, . . . , f1 g−1).

Since Kg−2(T̄i) + Kg−2(T̄j) has grade g for some i, j(i 6= j), it follows
from (4.4) and (4.5) that Kg−1(f) is a complete intersection of grade g. Let
x = f21, f11, f12, . . . , f1 g−1. Then y1 = f̂21, f11, f12, . . . , f1 g−1 and each yi =
f21, f11, f12, . . . , f̂1 i−1, . . . , f1 g−1 for i > 1 are regular sequences. From (4.4),
f21 is regular on R/Kg−2(T̄1), and f1i−1 is regular on R/Kg−2(T̄i) for i > 1.
Let Gi be a complex of free R-modules such that

G1 : 0 // R
f21 // R ,

and for i > 1,

Gi : 0 // R
f1i−1 // R .

Then by the part (1) of Lemma 4.1, Gi ⊗K(yi) is a minimal free resolution of
R/Kg−1(f).

(2) We showed in Theorem 3.7 that the part (2) holds for the case of g =
4. Let I = (x1, x2, . . . , xg) be a complete intersection of grade g and I ′ =
(x2, x3, . . . , xg) be a complete intersection of grade g − 1. The same argument
as in the proof of the part (2) of Theorem 3.7 says that ϕ2 in (4.6) is of the
form

ϕ2 =



ϕ̃1 0

d̃ ϕ̃2


 ,

where

ϕ̃1 =
[−x2 −x3 · · · −xg

]
, d̃ = diag(x1, x1, . . . , x1),

and ϕ̃2 is the second differential map of the minimal free resolution of R/I ′.
Lemma 4.9 says that ϕ̃2 is a complete matrix of grade g−1. Since x1, x2, . . . , xg
is a regular sequence on R, Lemma 4.9 implies that ϕ2 is a complete matrix of
grade g. We observe that every row of ϕ2 consists of g− 1 nonzero entries and



670 EUN JEONG CHOI, OH-JIN KANG, AND HYOUNG J. KO

t− g + 1 zero entries. The similar argument as in the proof of Proposition 4.3
gives us the following : Let (S̄i, T̄i) be a pair of a (g − 1) × (g − 1) diagonal
matrix and a (g − 1) × (t − g + 1) complete matrix of grade g − 1. Then for
i = 1, 2, . . . , g,

det S̄i = ±xg−1
i , Kg−2(T̄i) = (x1, x2, . . . , x̂i, xi+1, . . . , xg).

So we have
Kg−1(ϕ2) = (x1, x2, . . . , xg), and Kg−2(T̄i) +Kg−2(T̄j) = Kg−1(ϕ2)
for some i 6= j.

We know that each Kg−2(T̄i) has grade g − 1, and Kg−1(ϕ2) is a complete
intersection of grade g. Hence ϕ2 satisfies the part (1) of Theorem 4.10. Since
every complete intersection is Gorenstein, F ∼= F∗ as complexes. So F∗ is the
minimal free resolution of R/I. The same argument as in the proof of the part
(2) of Theorem 3.7 for K(x) and F∗ gives us the proof that the transpose of
ϕg−1 is a complete matrix of grade g. ¤

It should be noticed that Theorem 3.7 is just the special case of g = 4 in
Theorem 4.10. The following example illustrates how Theorem 4.10 works.

Example 4.11. Let C be the field of the complex numbers and R the formal
power series ring C[[xij , y, z, w, u|1 ≤ i, j ≤ 3]] over C with indeterminates
xij , y, z, w, u. Consider a 3× 3 matrix X and a 3× 3 alternating matrix Y

X =



x11 x12 x13

x21 x22 x23

x31 x32 x33


 , Y =




0 w z
−w 0 y
−z −y 0


 .

Define

Z1 =
3∑

i=1

Yixi1, Z2 =
3∑

i=1

Yixi2, Z3 =
3∑

i=1

Yixi3, v = detX.

Then I = (Z1, Z2, Z3, v) is an almost complete intersection of grade 3 of type
3 [1, 5]. Assume that z = Z1, Z2, Z3 is a regular sequence on R. Then

J = (z) : I = (Y1, Y2, Y3) = (y, z, w).

Since v is not contained in the ideal J, I ∩ J = (z). Hence I is geometrically
linked to J by a regular sequence z. Thus by Theorem 2.3, K = I + J =
(y, z, w, v) is a complete intersection of grade 4. So x = y, z, w, v is a regular
sequence on R. We may assume that u is a regular element on R/K. Thus
H = (y, z, w, v, u) is a complete intersection of grade 5. Let

K(u) : 0 // R
u // R

be a complex of free R-modules and R-maps. Then H = K(u)⊗K(x) described
as in the part (2) of Lemma 4.1 is the minimal free resolution of R/H. Let φ2

be the second differential map in H. Since y, z, w, v, u is a regular sequence
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on R, by Lemma 4.9, φ2 is a complete matrix of grade 5. It is easy to show
that K4(φ2) = (u, y, z, w, v) is a complete intersection of grade 5. Moreover,
we let T̄i be a 4× 6 complete matrix of grade 4 with the same notation, T̄i in
Definition 4.5. Then we have

K3(T̄1) = (y, z, w, v), K3(T̄2) = (u, z, w, v), K3(T̄3) = (u, y, w, v),

K3(T̄4) = (u, y, z, v), K3(T̄5) = (u, y, z, w).

Hence K3(T̄i) + K3(T̄j) = K4(φ2) for some i 6= j. This illustrates the Theo-
rem 4.10.
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