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A CHARACTERIZATION OF DIRICHLET SETS

Hune Hwan Lee

The notion of a Dirichlet set has been studied for several decades.
Such sets are named in honour of Dirichlet’s Theorem [4, p.235]
which, in modern terminology, simply says that every finite set in R
is a Dirichlet set.

In this paper, we present a structure theorem which characterizes
all D-sets on the real line. We also use our structure theorem to give

a new proof of a known criterion for proving that a set fails to be a
D-set,

DermviTion 1. [2, p.1] A bounded set ACR is called a Dirichlet
set (in short, D-set) if there exists a sequence (a,)i; in R such that

lim a,=co and lklm (sup [|sin a,z|)=0. (Define sup =0 for the
TEA

A—co — 00

empty set ¢, so ¢ is a D-set).
Let us state a proposition which can easily be proved.

Prorposition 2. If AR is a D-set and BER, then there exists
(n)ie in N such that
lim n,=cc and lim (sup |sin n.Bzx|) =0.
koo zEA

ko0

In particular, BA={Bx:z€A} is a D-set for every SER.

Remark 3. Proposition 2 shows that for any D-set A, we may choose
a sequence in NV satisfying the condition in the definition of D-set.

We will use the following notation throughout the rest of this paper.

Noration 4. Let a= (@j)izi <N\{1} be given. Write Di={zeZ:
0<z<a;} for the set of “digits’ in the j~th place and define
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b,-:ﬁ a; for every jE N,
i=1
Fix any sets F; with ¢#F,cD; for every jeN. Put F=(F)..
Write E=E(a, F)= (521 : ;€ F, for every j21).
=1 b;

Lemma 5, Let xER:x:xo—Jf—f}—;’l—, where x;€D; for all jeN
=1 b;

and o Z. Suppose that there exist ne N and z,€Z (1<z,<a,) such

that either 0<z,<z2, or a,—2,<zx,<a, Then |sin b, wz|< ﬂ:” .

n
Proof. We consider two cases separately.

Case (1): 0<zx,<z, Let

def n—1 .
xj

My =bp1Z9+byey B,
i=1 0f

Then, m,=Z and m,,Sb,,_lacSm,‘-I—%. Thus,

n

’% sin b,z I <dist(b,;, Z) <2

Case (2): a,—z2,<z,<a, With m, as above, we have

m,,+12bn_1x=m,,+i——————>m,,+1~———-

i=n Ay 1°°"A;j a,

Thus,

’ %sinn’b,,_lx <dist(b,_;, Z) < —ZL

n

Using this lemma, we next prove a theorem that is needed to prove
Theorem 8, our main theorem of this paper.

THeOREM 6. For each n €N define
z,=min{(e€N : F,c{0,1, ..., 2—1} U {a,—

If lim=2 Z2 =0, then E=E(a, F) is a D-set.

Tnooo n

ko...,a,—1}}.

Proof. Let x€E : z= Zb , where z;€F; for every j&N. Let
(2p @ny) =1 be a double sequence such that
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Zm 40 as koo, @
4
By Lemma 5, we have
T2y,

|sin b,,_wx| < for all £>-1. @)

g
The sequence ()5, does not depend on z€F, so (1) and (2) yield
that E is a D-set.

In order to give a simple statement of our iain theorem, we make
the following definition.

Derinirion 7. A set of the form E=E(a, F) is called a special D-
set if

(1) m A2y =00

(ll) sz:{o, agj'—l} and F2j—1:D2j—1 fOI‘ all ]EN.

Note that every special D-set is indeed a D-set by Theorem 6.
This provides lots of examples of uncountable D-sets,

Now, we are ready for the main theorem which can be compared
with Marcinkiewicz’'s [2, p.3].

TueoreM 8. If ACR is a D-set, then ACF,+E for some Jfinite
set By ©Z and some special D-set E.

Proof. Choose any sequence ()57 <N\{1} such that lim 5;=00,

Put a0:b0:1 and az;—3§; for 7=1. If ]>O and A1y A3y veuy ﬂzj_IEN has
been determined, use the fact that b2 A is a D-set, to choose a5, €

N\ {1} such that

|sin a2j+1b2j7cx I < for all TEA.

2j+2
Then,
dist (azj+1b2j$, Z)< 1
2542
S0,
. zZ
dist{ z, < for ze A. @
baji1 b2j 12

This defines a=(a,)2, inductively in such a way that (1) holds for

— 185 —



Hung Hwan Lee

all j>0. Let x=A be given. Consider the @-adic expansion, z=uz,+

1ZL where z;€D; for every jEN, xy=max{neZ:n<z} and
i=1b; i1

z;j=00 [3,p.88]. Given neZ with n>0, choose peZ such that

P N - x; - p+1
= + =L < 2
bon1 <= b2ni1 1=§+2 b;  ban1 @
Then (1) and (2) show either
5" Ly P 1
0<i:§+2 bj * bans1 < bania (3)
or
= (g—1) —z; 1 ez _ p+1 1
< — — = _ 4
0——i=§+2 bj bzn+1 j=§+2 bj b2n+1 x< b2n+2 ( )

If (38) holds, then x,,.,=0. If (4) holds, then (as,.9—1) —Z2,42=0.
In either case, we have z5,,,€ {0, asy:2—1} for n>0. Now define F
by
Fopi2=1{0, azy12—1} and Fp,y =Dy, for 220.
We have just proved that x=xzy+E(a, F) where E(a, F) is a special
D-set, Finally to define F,CZ, note that we can take s, ¢(s<#) in Z
such that Ac (s,2) since A is bounded. Now define F,=[s,¢t]NZ.
Then F, is finite and zo€F,. Since z€ A was arbitrary, we have
ACF,+E(a, F).

The following theorem, which appears in [2, p.2] with a very
different proof, when combined with the fact that any translate of a
D-set, affords our simplest way of proving that certain bounded sets
of measure zero are not D-sets.

Tueorem 9.  Suppose that ACR and A contains a strictly decreasing
sequence (xp) i1 with

lim z;=0 and lim-Zttl >,
ko0 Foee X

Then A is not a D-set.

Proof. Assume to the contrary that A is a D-set. Then AN (0,1]
is a D-set so Theorem 8 provides a special D-set, E=E(a, F) with
AN(0,1]cE. Choose 6>>0 and I N such that

E>1=2,<<1 and x—;iza. €))

x
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Next ix n€ N such that

< and @y >5+2. @
Define p by
pr1=minfke N : < .
Then
1p+1§712:<xp (3
so (2) shows that p>7 and hence (1) gives z,=2AN (0,1]J<E and
x,< xf;l. )
Let x;,:g}l x]f’.f be the @-adic expansion of z, having z,;&F; for

J
J=1. Now we can choose jo<2n with z,, j,=>0 since otherwise we would
have

oo T . o a._l
xP: Z 2. < J :__l_‘.
=T by ima by by,

If jo,=2n, then Zp, j,=az,—1 so xpzﬁzg_l. If j,<2n, then Zp, 5,21
2n
xP-jo aZn . .
and bon=bj a2, 5O xl,Z—Z—Z—. In either case we obtain by use of
Jo 2n

(2)7 (3)a and (4) that
1 <a2ﬂn—2:a2n_1_ 1

5b2" bzn bzn bZn
x
Sxp— xp+1<—§ig —5}112_.

This contradiction completes the proof that A is not a D-set.
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