A CHARACTERIZATION OF DIRICHLET SETS

HUNG HWAN LEE

The notion of a Dirichlet set has been studied for several decades. Such sets are named in honour of Dirichlet's Theorem [4, p. 235] which, in modern terminology, simply says that every finite set in **R** is a Dirichlet set.

In this paper, we present a structure theorem which characterizes all D-sets on the real line. We also use our structure theorem to give a new proof of a known criterion for proving that a set fails to be a D-set.

DEFINITION 1. [2, p. 1] A bounded set $A \subset \mathbf{R}$ is called a *Dirichlet set* (in short, D-set) if there exists a sequence $(\alpha_{\kappa})_{k=1}^{\infty}$ in \mathbf{R} such that $\lim_{k\to\infty} \alpha_{\kappa} = \infty$ and $\lim_{k\to\infty} (\sup_{x\in A} |\sin \alpha_{\kappa}x|) = 0$. (Define $\sup \phi = 0$ for the empty set ϕ , so ϕ is a D-set).

Let us state a proposition which can easily be proved.

Proposition 2. If $A \subset \mathbf{R}$ is a D-set and $\beta \in \mathbf{R}$, then there exists $(n_s)_{k=1}^{\infty}$ in \mathbf{N} such that

$$\lim_{k\to\infty} n_{\kappa} = \infty \text{ and } \lim_{k\to\infty} (\sup_{x\in A} |\sin n_{\kappa}\beta x|) = 0.$$

In particular, $\beta A = \{\beta x : x \in A\}$ is a D-set for every $\beta \in R$.

Remark 3. Proposition 2 shows that for any D-set A, we may choose a sequence in N satisfying the condition in the definition of D-set.

We will use the following notation throughout the rest of this paper.

Notation 4. Let $\boldsymbol{a} = (a_j)_{j=1}^{\infty} \subset N \setminus \{1\}$ be given. Write $D_j = \{x \in \boldsymbol{Z} : 0 \le x < a_j\}$ for the set of "digits" in the j-th place and define

Received February 6, 1990.

Revised April 24, 1990.

^{*} This work was partially supported by KOSEF research grant, 881-0102-005-2 and the Basic Science Research Institute Program, Ministry of Education, 1989.

$$b_j = \prod_{i=1}^j a_i$$
 for every $j \in \mathbb{N}$.

Fix any sets F_j with $\phi \neq F_j \subset D_j$ for every $j \in \mathbb{N}$. Put $\mathbf{F} = (F_j)_{j=1}^{\infty}$. Write $E = E(\mathbf{a}, \mathbf{F}) = \{\sum_{j=1}^{\infty} \frac{x_j}{b_j} : x_j \in F_j \text{ for every } j \geq 1\}$.

LEMMA 5. Let $x \in \mathbf{R}$: $x = x_0 + \sum_{j=1}^{\infty} \frac{x_j}{b_j}$, where $x_j \in D_j$ for all $j \in \mathbf{N}$ and $x_0 \in \mathbf{Z}$. Suppose that there exist $n \in \mathbf{N}$ and $z_n \in \mathbf{Z}$ $(1 \le z_n \le a_n)$ such that either $0 \le x_n < z_n$ or $a_n - z_n \le x_n < a_n$. Then $|\sin b_{n-1}\pi x| \le \frac{\pi z_n}{a_n}$.

Proof. We consider two cases separately.

Case (1): $0 \le x_n < z_n$. Let

$$m_n = b_{n-1} x_0 + b_{n-1} \sum_{j=1}^{n-1} \frac{x_j}{b_i}$$

Then, $m_n \in \mathbb{Z}$ and $m_n \le b_{n-1}x \le m_n + \frac{z_n}{a_n}$. Thus,

$$\left|\frac{1}{\pi}\sin \pi b_{n-1}x\right| \leq \operatorname{dist}(b_{n-1}, \mathbf{Z}) \leq \frac{z_n}{a_n}.$$

Case (2): $a_n - z_n \le x_n < a_n$. With m_n as above, we have

$$m_n+1 \ge b_{n-1}x = m_n + \sum_{j=n}^{\infty} \frac{x_j}{a_n a_{n+1} \cdots a_j} \ge m_n + 1 - \frac{z_n}{a_n}$$

Thus,

$$\left|\frac{1}{\pi}\sin\pi b_{n-1}x\right| \leq \operatorname{dist}(b_{n-1}, \mathbf{Z}) \leq \frac{z_n}{a_n}$$

Using this lemma, we next prove a theorem that is needed to prove Theorem 8, our main theorem of this paper.

THEOREM 6. For each $n \in \mathbb{N}$ define $z_n = \min\{k \in \mathbb{N} : F_n \subset \{0, 1, ..., k-1\} \cup \{a_n - k, ..., a_n - 1\}\}.$

If $\lim_{n\to\infty} \frac{z_n}{a_n} = 0$, then E = E(a, F) is a D-set.

Proof. Let $x \in E : x = \sum_{j=1}^{\infty} \frac{x_j}{b_j}$, where $x_j \in F_j$ for every $j \in \mathbb{N}$. Let $(z_{n_k}, a_{n_k})_{k=1}^{\infty}$ be a double sequence such that

$$\frac{z_{n_k}}{a_{n_k}} \to 0 \text{ as } k \to \infty.$$
 (1)

By Lemma 5, we have

$$|\sin b_{n_k-1}\pi x| \le \frac{\pi z_{n_k}}{a_{n_k}} \text{ for all } k \ge 1.$$
 (2)

The sequence $(n_k)_{k=1}^{\infty}$ does not depend on $x \in E$, so (1) and (2) yield that E is a D-set.

In order to give a simple statement of our main theorem, we make the following definition.

Definition 7. A set of the form E=E(a, F) is called a special D-set if

- (i) $\overline{\lim}_{n\to\infty} a_{2n} = \infty$
- (ii) $F_{2j} = \{0, a_{2j} 1\}$ and $F_{2j-1} = D_{2j-1}$ for all $j \in \mathbb{N}$.

Note that every special D-set is indeed a D-set by Theorem 6. This provides lots of examples of uncountable D-sets.

Now, we are ready for the main theorem which can be compared with Marcinkiewicz's [2, p.3].

Theorem 8. If $A \subset \mathbf{R}$ is a D-set, then $A \subset F_0 + E$ for some finite set $F_0 \subset \mathbf{Z}$ and some special D-set E.

Proof. Choose any sequence $(s_j)_{j=1}^{\infty} \subset \mathbb{N} \setminus \{1\}$ such that $\overline{\lim}_{i \to \infty} s_j = \infty$. Put $a_0 = b_0 = 1$ and $a_{2j} = s_j$ for $j \ge 1$. If j > 0 and $a_1, a_3, ..., a_{2j-1} \in \mathbb{N}$ has been determined, use the fact that $b_{2j}\pi A$ is a D-set, to choose $a_{2j+1} \in \mathbb{N} \setminus \{1\}$ such that

$$|\sin a_{2j+1}b_{2j}\pi x| < \frac{2}{a_{2j+2}} \text{ for all } x \in A.$$

Then,

$$\operatorname{dist}(a_{2j+1}b_{2j}x,\boldsymbol{Z})<\frac{1}{a_{2j+2}}$$

so,

$$\operatorname{dist}\left(x, \frac{\mathbf{Z}}{b_{2j+1}}\right) < \frac{1}{b_{2j+2}} \text{ for } x \in A.$$
 (1)

This defines $a = (a_i)_{i=1}^{\infty}$ inductively in such a way that (1) holds for

all $j \ge 0$. Let $x \in A$ be given. Consider the \boldsymbol{a} -adic expansion, $x = x_0 + \sum_{j=1}^{\infty} \frac{x_j}{b_j}$, where $x_j \in D_j$ for every $j \in \boldsymbol{N}$, $x_0 = \max\{n \in \boldsymbol{Z} : n < x\}$ and $\sum_{j=1}^{\infty} x_j = \infty$ [3, p. 88]. Given $n \in \boldsymbol{Z}$ with $n \ge 0$, choose $p \in \boldsymbol{Z}$ such that

$$\frac{p}{b_{2n+1}} < x = \frac{p}{b_{2n+1}} + \sum_{j=2n+2}^{\infty} \frac{x_j}{b_j} \le \frac{p+1}{b_{2n+1}}$$
 (2)

Then (1) and (2) show either

$$0 < \sum_{j=2n+2}^{\infty} \frac{x_j}{b_j} = x - \frac{p}{b_{2n+1}} < \frac{1}{b_{2n+2}}$$
 (3)

or

$$0 \le \sum_{j=2n+2}^{\infty} \frac{(a_j - 1) - x_j}{b_j} = \frac{1}{b_{2n+1}} - \sum_{j=2n+2}^{\infty} \frac{x_j}{b_j} = \frac{p+1}{b_{2n+1}} - x < \frac{1}{b_{2n+2}}$$
(4)

If (3) holds, then $x_{2n+2}=0$. If (4) holds, then $(a_{2n+2}-1)-x_{2n+2}=0$. In either case, we have $x_{2n+2}\in\{0, a_{2n+2}-1\}$ for $n\geq 0$. Now define F by

$$F_{2n+2} = \{0, a_{2n+2} - 1\}$$
 and $F_{2n+1} = D_{2n+1}$ for $n \ge 0$.

We have just proved that $x \in x_0 + E(\boldsymbol{a}, \boldsymbol{F})$ where $E(\boldsymbol{a}, \boldsymbol{F})$ is a special D-set. Finally to define $F_0 \subset \boldsymbol{Z}$, note that we can take $s, t(s \le t)$ in \boldsymbol{Z} such that $A \subset (s, t)$ since A is bounded. Now define $F_0 = [s, t] \cap \boldsymbol{Z}$. Then F_0 is finite and $x_0 \in F_0$. Since $x \in A$ was arbitrary, we have $A \subset F_0 + E(\boldsymbol{a}, \boldsymbol{F})$.

The following theorem, which appears in [2, p. 2] with a very different proof, when combined with the fact that any translate of a D-set, affords our simplest way of proving that certain bounded sets of measure zero are not D-sets.

THEOREM 9. Suppose that $A \subset \mathbf{R}$ and A contains a strictly decreasing sequence $(x_k)_{k=1}^{\infty}$ with

$$\lim_{k\to\infty} x_k=0 \text{ and } \lim_{k\to\infty} \frac{x_{k+1}}{x_k}>0.$$

Then A is not a D-set.

Proof. Assume to the contrary that A is a D-set. Then $A \cap (0, 1]$ is a D-set so Theorem 8 provides a special D-set, $E = E(\boldsymbol{a}, \boldsymbol{F})$ with $A \cap (0, 1] \subset E$. Choose $\delta > 0$ and $l \in \boldsymbol{N}$ such that

$$k \ge l \Rightarrow x_k < 1 \text{ and } \frac{x_{k+1}}{x_x} \ge \delta.$$
 (1)

Next fix $n \in \mathbb{N}$ such that

$$\frac{1}{b_{2n}} \langle x_l \text{ and } a_{2n} \rangle \frac{1}{\delta} + 2. \tag{2}$$

Define p by

$$p+1=\min\left\{k\in N: x_k\leq \frac{1}{b_{2n}}\right\}.$$

Then

$$x_{p+1} \le \frac{1}{b_{2p}} < x_p \tag{3}$$

so (2) shows that $p \ge l$ and hence (1) gives $x_p \in A \cap (0, 1] \subset E$ and

$$x_p \leq \frac{x_{p+1}}{\tilde{o}}.\tag{4}$$

Let $x_p = \sum_{j=1}^{\infty} \frac{x_{p,j}}{b_j}$ be the **a**-adic expansion of x_p having $x_{p,j} \in F_j$ for $j \ge 1$. Now we can choose $j_0 \le 2n$ with $x_{p,j_0} > 0$ since otherwise we would have

$$x_p = \sum_{j=2n+1}^{\infty} \frac{x_{p,j}}{b_j} \le \sum_{j=2n+1}^{\infty} \frac{a_j - 1}{b_j} = \frac{1}{b_{2n}}.$$

If $j_0=2n$, then $x_{p,j_0}=a_{2n}-1$ so $x_p \ge \frac{a_{2n}-1}{b_{2n}}$. If $j_0 < 2n$, then $x_{p,j_0} \ge 1$

and $b_{2n} \ge b_{j_0} a_{2n}$ so $x_p \ge \frac{x_{p,j_0}}{b_{j_0}} \ge \frac{a_{2n}}{b_{2n}}$. In either case we obtain by use of (2), (3), and (4) that

$$\frac{1}{\delta b_{2n}} < \frac{a_{2n} - 2}{b_{2n}} = \frac{a_{2n} - 1}{b_{2n}} - \frac{1}{b_{2n}}$$

$$\leq x_p - x_{p+1} < \frac{x_{p+1}}{\delta} \leq \frac{1}{\delta b_{2n}}.$$

This contradiction completes the proof that A is not a D-set.

Acknowledgement. The author would like to express his sincere gratitude to Karl R. Stromberg for various advice on the present work.

References

1. Kahane, J.P. and Salem, R., Ensembles parfaits et séries trigenométrques, Hermann, Paris, 1963.

Hung Hwan Lee

- 2. Lindahl, L. -Å and Poulsen, F., Thin sets in Harmonic Analysis, Marcel Dekker, Inc., New York, 1971.
- 3. Stromberg, Karl, Introduction to Classical Real Analysis, Wadsworth, Inc., Belmont, California, 1981.
- 4. Zygmund, A., *Trigonometric*, *Series*, Cambridge University Press, New York, 1979.

Kyungpook National University, Taegu 702-701, Korea