• 제목/요약/키워드: structure system

검색결과 22,340건 처리시간 0.043초

공동주택 구조형태별 층간 공기전달음 차단 성능 (The Performance of Insulation of Noise by Air between Floors According to Structure Systems of Apartment)

  • 이병권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1152-1155
    • /
    • 2007
  • Lately concerns about structure have been increased by advantages of floor impact noise, poilitical induction and changeability. Hence, Flat Plate Structure has been constructed increasingly. This study shows the comparison of the performance of sound insulation of Flat Plate Structure System and the existing Wall Structure. For this study, taking the same level organization of Daelim Architectural Environmental Research Center, I found the performance of sound insulation between the upper and lower floors about Wall Structure and Flat Plate Structure. Consequently, the performance of sound insulation between upper and lower floors of Flat Plate Structure was 3-5dB higher was approximately 3-5dB higher than one of Wall Structure. Especially, the performance of sound insulation on the upper floor was 1-3dB higher than on the lower floor. In addition, as the result of comparing radiation sound which radiates from the wall of lower floors with each structure system, Flat Plate Structure was about 4dB higher with Rw than Wall Structure. As we see totally, the performance of sound insulation of Flat Plate Structure is highter than one of the Wall Structure. It is 3-5dB higher and the main reason for this result depends on the existence of the wall which can radiate sound and nonexistence.

  • PDF

플로팅 슬래브궤도를 적용한 선하역사 구조물 진동해석 (Vibration Analysis of Station under Railway Lines with Floating Slab Track)

  • 장승엽;조호현;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1719-1724
    • /
    • 2010
  • In the areas susceptible to vibration and noise induced by railway traffic such as downtown area and stations under railway lines, the vibration and the structure-borne noise can be solved by floating slab track system separating the entire track structure from its sub-structure using anti-vibration mat or springs. In other countries, the core technologies for vibration-proof design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the design technology of system and components are not yet developed, the foreign systems are being introduced without any adjustment. Thus, in this study, the vibration isolator has been developed and its performance are investigated by the dynamic analysis of a station structure under railways lines and the floating slab track system. For this purpose, the loads transferred from the vibration isolator of the floating slab track were evaluated by train running simulation considering vehicle-track interaction, and then the dynamic analysis of station structure subjected to these loads was performed. The dynamic analysis results show that the proposed floating slab track can reduce the vibration of structure by about 25dB compared with that in conventional ballast track without floating system.

  • PDF

Seismic response of foundation-mat structure subjected to local uplift

  • El Abbas, Nadia;Khamlichi, Abdellatif;Bezzazi, Mohammed
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.285-304
    • /
    • 2016
  • The effects of large rotations and p-delta on the dynamic response of a structure subjected to seismic loading and local uplift of its foundation were analyzed in this work. The structure was modeled by an equivalent flexible mat mounted on a rigid foundation that is supported either by a Winkler soil type or a rigid soil. The equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-mat system where the structure was idealized as a single-degree-of-freedom. The obtained nonlinear coupled system of ordinary differential equations was integrated by using an adequate numerical scheme. A parametric study was performed then in order to evaluate the maximum response of the system as function of the intensity of the earthquake, the slenderness of the structure, the ratio of the mass of the foundation to the mass of the structure. Three cases were considered: (i) local uplift of foundation under large rotation with the p-delta effect, (ii) local uplift of foundation under large rotation without including the p-delta effect, (iii) local uplift of foundation under small rotation. It was found that, in the considered ranges of parameters and for moderate earthquakes, assuming small rotation of foundation under seismic loading can yield more adverse structural response, while the p-delta effect has almost no effect.

HEV용 인버터의 방열을 위한 수냉식 배관구조 (Water Cooling Pipe Structure for Heat-Dissipation of HEV Inverter System)

  • 김경만;우병국;이용화;강찬호;전태원;조관열
    • 전력전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.27-34
    • /
    • 2010
  • 하이브리드 전기자동차(HEV)용 인버터의 스위칭 소자에서 발생하는 열을 효율적으로 냉각시키기 위한 수냉식구조를 제안한다. 기존의 볼트형 냉각구조는 강한 수압에서 누수현상이 발생할 수 있으므로 본 논문에서는 이를 방지하기 위해 방열판 내에 파이프 형태의 구조를 적용하였다. 발열원을 기준으로 수로의 이격거리 변화와 여러 형태의 수로에 대해 방열현상을 시뮬레이션으로 해석하고, 방열효과가 우수한 2가지 배관구조 모델을 기준으로 방열효과를 비교 분석하였다. 시뮬레이션 결과를 토대로 2가지 배관구조를 적용한 HEV용 30kW급 인버터를 제작하여 방열효과를 검증하였다.

A Fault Tolerant Structure and Control Strategy for Electromagnetic Stirring Supplies

  • Li, Yan;Luo, An;Xiang, Xinxing;Chen, Yandong;He, Zhixing;Zhou, Fayun;Chen, Zhiyong
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1256-1267
    • /
    • 2017
  • A fault tolerant structure and its corresponding control strategy for electromagnetic stirring power supplies are proposed in this paper. The topology structure of the electromagnetic stirring power supply contains two-stages. The fore-stage is the PWM rectifier. The back-stage is the fault tolerant inverter, which is a two-phase three-bridge orthogonal inverter circuit while operating normally. When the power switch devices in the inverter are faulty, the structure of the inverter is reconfigured. The two-phase half bridge inverter circuit is constructed with the remaining power switch devices and DC-link capacitors to keep the system operating after cutting the faulty power switch devices from the system. The corresponding control strategy is proposed to let the system work under both normal and fault conditions. The reliability of the system is improved and the requirement of the electromagnetic stirring process is met. Finally, simulation and experimental results verify the feasibility of the proposed fault tolerant structure and corresponding control strategy.

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

고감속비를 가지는 베어링일체형 구조의 2단 전위 감속기의 개발 (Development of Dual Stage Profile Shifted Gear System with Bearing-Integrated Structure for High Reduction Ratio)

  • 황일규;최정수;정문수
    • 한국CDE학회논문집
    • /
    • 제17권5호
    • /
    • pp.312-323
    • /
    • 2012
  • Planetary gearing is a gear system consisting of one or more planet gears, revolving about a sun gear. While the planetary gear system has many advantages- for example, high power density, large reduction in a small volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting, it has not been widely used because of its high bearing loads, inaccessibility, and design complexity. It is also necessary to shift several pairs of gear profiles at a same time. Therefore, designing profile shifted planetary gear system is a difficult and know-how dependent job. This study provides a practical solution to design a profile shifted gear system by the procedural design scheme, and proposes a bearing integrated structure of the dual stage profile shifted gear system with a robust output end. A dual stage profile shifted gear system with the bearing integrated structure is manufactured by the proposed design scheme in this study. This gear system is verified that it is good enough to commercialize, because it has high performance with high gear ratio and robust output end against axial and radial directional runouts in a small space.

The Generator Excitation Control Based on the Quasi-sliding Mode Pseudo-variable Structure Control

  • Hu, Jian;Fu, Lijun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1474-1482
    • /
    • 2018
  • As an essential means of generator voltage regulation, excitation control plays an important role in controlling the stability of the power system. Therefore, the reasonable design of an excitation controller can help improve the system stability. In order to raise the robustness of the generator exciting system under outside interference and parametric perturbation and eliminate chattering in the sliding mode control, this paper presents a generator excitation control based on the quasi-sliding mode pseudo-variable structure control. A mathematical model of the synchronous generator is established by selecting its power, speed and voltage deviation as state variables. Then, according to the existing conditions of the quasi-sliding mode, a quasi-sliding mode pseudo-variable structure controller is designed, and the parameters of the controller are obtained with the method of pole configuration. Simulations show that compared with the existing methods, the proposed method is not only useful for accurate voltage regulation, but also beneficial to improving the robustness of the system at a time when perturbance happens in the system.

부유식 초대형 해상구조물의 건설을 위한 법제도 개선에 관한 연구 (A Study on Improvement of Legal System for Construction of Very Large Floating Structure)

  • 이한석;송화철
    • 한국항만학회지
    • /
    • 제13권2호
    • /
    • pp.365-380
    • /
    • 1999
  • In this thesis the legal systems related to real estate and sea area utilization are studied in order to improve them for construction of Very Large Floating Structure. Main research subjects are as follows: 1) Whether can Very Large Floating Structure be accepted or not as real estate like house and land\ulcorner 2) How can the sea area which is occupied by Very Large Floating Structure be utilized\ulcorner As the conclusion, the Very Large Floating Structure can be registered as real estate even though it is not specified by Korean law for the present. The design concept of Very Large Floating Structure can be interpreted as satisfying enough necessary conditions and factors for Very Large Floating Structure to become real estate. In the near future, we have to make improvement on the laws related with the construction of Very Large Floating Structures so that private sectors can joint the construction. In additions, a new law for various floating structures should be made as soon as possible.

  • PDF