• Title/Summary/Keyword: structural work

Search Result 2,861, Processing Time 0.026 seconds

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Thermoresistant properties of bacterioferritin comigratory protein against high temperature stress in Schizosaccharomyces pombe (Schizosaccharomyces pombe에 존재하는 bacterioferritin comigratory protein의 고온 스트레스에 대한 열저항적 성질)

  • Ryu, In Wang;Lee, Su Hee;Lim, Hye-Won;Ahn, Kisup;Park, Kwanghark;Sa, Jae-Hoon;Jeong, Kyung Jin;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • The Schizosaccharomyces pombe structural gene encoding bacterioferritin comigratory protein (BCP) was previously cloned using the shuttle vector pRS316 to generate the BCP-overexpressing plasmid pBCP10. The present work aimed to evaluate the thermoresistant properties of BCP against high temperature stress using the plasmid pBCP10. When the S. pombe cells were grown to the early exponential phase and shifted from $30^{\circ}C$ to $37^{\circ}C$ or $42^{\circ}C$, the S. pombe cells harboring pBCP10 grew significantly more at both $37^{\circ}C$ and $42^{\circ}C$ than the vector control cells. After 6 h of the shifting to higher incubation temperatures, they contained the lower reactive oxygen species (ROS) and nitrite content, an index of nitric oxide (NO), than the vector control cells. After the temperature shifts, total glutathione (GSH) content and total superoxide dismutase (SOD) activities were much higher in the S. pombe cells harboring pBCP10 than in the corresponding vector control cells. Taken together, the S. pombe BCP plays a thermoresistant role which might be based upon its ability both to down-regulate ROS and NO levels and to up-regulate antioxidant components, such as total GSH and SOD, and subsequently to maintain thermal stability.

Flexural Tensile Strength of CJP Groove Welded Joints Connecting Thick HSA800 Plates (HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.407-418
    • /
    • 2014
  • As a continuing work of previously conducted standard tension tests, full-scale flexural tests were conducted in this study to assess the structural performance the CJP groove welded joints connecting thick HSA800 plates. Two welding electrodes were available at the time of this experimental research; one was GMAW-based electrode A and the other FCAW-based electrode B. Three full-scale box-type beam specimens with single bevel- and V-groove CJP welded joints were fabricated from 60mm and 25mm thick HSA800 plates according to the AWS-prequalified groove welded joint details. In designing the specimens, all possible limit states like local and lateral torsional buckling were carefully controlled in order to induce flexural plastic yielding or eventual joint fracture. All the CJP joints made by both welding electrodes showed satisfactory performance and were able to transfer the tensile flange forces higher than that corresponding to the measured tensile strength of HSA800 flange plates. However, it should be noted that, during fabrication, serious concerns about the welding efficiency and workability of the GMAW-based electrode were raised by a certified welder. The fracture occurred at the unbeveled (or vertical) interface between the weldment and the base metal when the GMAW-based electrode was used in the single-bevel joint, implying the possibility of insufficient melting. Thus, the FCAW-based electrode B is again recommended as the choice of welding electrode for HSA800 plates. The limited test data of this study implies that the V-groove CJP joint should be used in favor of the single bevel CJP joint, if possible.

Optical Characterizations of TlBr Single Crystals for Radiation Detection Applications

  • Oh, Joon-Ho;Kim, Dong Jin;Kim, Han Soo;Lee, Seung Hee;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.167-171
    • /
    • 2016
  • Background: TlBr is of considerable technological importance for radiation detection applications where detecting high-energy photons such as X-rays and ${\gamma}$-rays are of prime importance. However, there were few reports on investigating optical properties of TlBr itself for deeper understandings of this material and for making better radiation detection devices. Thus, in this paper, we report on the optical characterizations of TlBr single crystals. Spectroscopic ellipsometry (SE) and photoluminescence (PL) measurements at RT were performed for this work. Materials and Methods: A 2-inch TlBr single crystalline ingot was grown by using the vertical Bridgman furnace. SE measurements were performed at RT within the photon energy range from 1.1 to 6.5 eV. PL measurements were performed at RT by using a home-made PL system equipped with a 266 nm-laser and a spectrometer. Results and Discussion: Dielectric responses from SE analysis were shown to be slightly different among the different samples possibly due to the different structural/optical properties. Also from the PL measurements, it was observed that the peak intensities of the middle samples were significantly higher than those of the other two samples. With the given values for permittivity of free space (${\varepsilon}_0=8.854{\times}10^{-12}F{\cdot}m^{-1}$), thickness (d = 1 mm), and area ($A=10{\times}10mm^2$) of the TlBr sample, capacitances of TlBr were 6.9 pF (at $h{\nu}=3eV$) and 4.4 pF (at $h{\nu}=6eV$), respectively. Conclusion: SE and PL measurement and analysis were performed to characterize TlBr samples from the optical perspective. It was observed that dielectric responses of different TlBr samples were slightly different due to the different material properties. PL measurements showed that the middle sample exhibited much stronger PL emission peaks due to the better material quality. From the SE analysis, optical, dielectric constants were extracted, and calculated capacitances were in the few pF range.

Prediction Model of Unbonded Tendon Stresses in Post-Tensioned Members (포스트텐션 부재에서 비부착긴장재의 응력 거동 예측 모델)

  • Kim, Kang-Su;Lee, Deuck-Hang;Kal, Gyung-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.763-771
    • /
    • 2009
  • As the demand on long span structures increases more in recent years, the excessive deflection, in addition to the ultimate strength, in horizontal members becomes a very important issue. For this reason, as an alternative method to effectively solve the deflection problems, the application of post-tensioned structural system with unbonded tendon increases gradually. However, most of the existing researches on post-tensioned members with unbonded tendons (UPT) focused on the ultimate flexural strength, which would be impossible or improper to check serviceability such as deflections. Therefore, this study aims at proposing a stress prediction model for unbonded tendons that is applicable to the behavior of UPT members from the very initial loading stages, post-cracking states, and service to ultimate conditions. The applicability and accuracy of the proposed model were also evaluated comparing to the existing test results from literature. Based on such comparison results, it was verified that the proposed model provided very good predictions on tendon stresses of UPT members at various loading stages regardless their different characteristics; wide range of reinforcement index, different loading patterns, and etc. The proposed model especially well considered the effect of various loading types on stress increases of unbonded tendons, and it was also very suitable to apply on the over-reinforced members that easily happened during strengthening/repairing work.

Properties and Structures of Bi2O3-B2O3-ZnO Glasses for Application in Plasma Display Panels Rib (PDP Rib용 Bi2O3-B2O3-ZnO계 유리의 물성과 구조)

  • Jin, Young-Hun;Jeon, Young-Wook;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.184-189
    • /
    • 2002
  • This study, compared with data of PbO-base glass system is a part of new glass composition design with Bi-base composition for PDP Rib. As $Bi_2O_3-B_2O_3-ZnO$ glass composition including Bi, which have similar density value and work facility to PbO, properties of softening point, thermal expansion coefficient, chemical durability, dielectric constant, and structural changing by XPS were investigated. $Bi_2O_3-B_2O_3-ZnO$ glass system, added 50∼80 wt% $Bi_2O_3$ widely, were presented 400∼480$^{\circ}C$ softening temperature, $68{\sim}72{\times}10^{-7}/^{\circ}C$ thermal expansion coefficient and 13∼25 dielectric constant. These results were showed similar physical properties with Pb-base glass system of same composition content, application possibility as starting composition of rib material was identified through micro-control of components and physical properties. The bonding energy of $O_{1s}$ as the $Bi_2O_3$ content decreasing was increased and full width at half-maximum (FWHM) was decreased, which is caused by non-bridging oxygen increasing.

Flexural Capacity of Precast Concrete Triple Ribs Slab (프리캐스트 콘크리트 트리플 리브 슬래브의 휨성능)

  • Hwang, Seung-bum;Seo, Soo-yeon;Lee, Kang-cheol;Lee, Seok-hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.3-11
    • /
    • 2016
  • The concern about hollow core PC slab has been increased to improve the workability during a construction of building by reducing self weight of structural members. In this manner, recently, TRS (Tripple Ribs Slab) was developed as a new type of half PC slab system. TRS member consists of the triple webs and the bottom flange prestressed by strands. The slab system is completed by casting of topping concrete on the TRS after filling styrofoam between the webs. This paper, presents a flexural experiment to investigate the flexural capacity of the TRS. Five full scale TRS members were made and tested under simple support condition to be failed by flexure and their strength was evaluated by code equations; the variables in the test are the depth and the presence of topping or raised spot formed when slip-forming. In addition, a nonlinear sectional analysis was performed for the specimens and the result was compared with the test results. From the study, it was found that the TRS has enough flexural strength and ductility to resist the design loads and its strength can be suitably predicted by using code equations. The raised spot did not affect the strength so that the spot need not to be removed by doing additional work. For the more accurate prediction of TRS's flexural behavior by using nonlinear sectional analysis, it is recommended to consider the concrete's brittle property due to slip-forming process in the modeling.

The Study of Comparison on Rapping Force on Generation of Corona Discharge Electrode of Electrostatic Precipitator (전기집진장치의 코로나 전류 발생 전극 제작에 따른 추타력 비교에 관한 연구)

  • Lee, Kang-Wuk;Park, Jeong-Ho;Jang, Seong-Ho;Lim, Woo-Taik;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.231-238
    • /
    • 2017
  • Rapid industrial development has led to a serious problem of pollution in the industrial sector. With the increasing social need for environmental protection, research on air pollution prevention equipment for reducing pollutants in industrial processes is actively being undertaken. The deterioration of existent, installed facilities, their increased emission rates, and the strengthening of the effluent quality standards make complying with permissible emission standards difficult. In fact, installing new electric precipitators or complementing existent facilities is inevitable. The expansion and complementation of the installed electrical precipitators have led to improvements in dust collection efficiency, shorter working times, and lower costs. Because of its easy installation and simple manufacturing process, the production method with the discharge electrode of an electric precipitator is widely used. The following conclusions were reached by classifying discharge electrodes into four types based on the production method and mutually comparing them by their dust collection efficiency. None of the four types used in this study were damaged by impact. However, we were able to confirm some strain from the compression sites of both type A and type B. Both type B and type C are expected to have greater dust collection efficiencies than the other models due to their large vibration transmissibility. Moreover, the high vibrational energy is expected to cause rapping damage during its operation. Particularly, in the case of type B, some of the strain was found at the end of the compression site. The coupling schemes of both type C and type D are out of vibration transmissibility. On the other hand, the ability to maintain straightness and solidity of the side is regarded as outstanding and stable. Type D has outstanding on-site workability, considering the presence of locking, structural stability, and work conditions. From these experiments, we determined that type C is the most ideal connection method of discharge electrode, considering its construction period of renovation. Type C is inferior to type D with regard to on-site workability. However, type C has outstanding dedusting transmission with regard to the straightness, solidity maintenance, and vibration of shearing stress.

A Study on the Effects of BSC System Acceptance Factors on the Intention for Continuous Use (BSC 시스템 수용요인이 지속적 사용의도에 미치는 영향에 관한 연구)

  • Kwon, Oh-Jun;Seo, Hyun-Sik;Oh, Jay-In
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.151-179
    • /
    • 2009
  • The purpose of this study is to make an empirical analysis on the factors affecting the intention for the continuous use of the BSC system, which has been recently spread in the public sector. Because the object of acceptance is the performance management system based on BSC (Balanced Scorecard) implemented in the form of information systems, this study proposes a research model by applying TAM (Technology Acceptance Model). Independent variables are factors affecting the acceptance of BSC system such as training, communication, IS support, CEO support and personal innovativeness, and we examine their effects on the dependent variable, namely, intention on continuous use via mediating variables: perceived usefulness and perceived ease of use. A questionnaire survey was conducted with public institutions(firms) that had introduced and were operating the BSC system; 264 valid questionnaires are adopted. Collected data are analyzed using SPSS 16.0 and AMOS 7.0. Results of reliability test show that all analyzed data are reliable. In validity test, one item regarding communication was excluded; 9 latent variables and 34 observed variables are used in the final analysis. Based on the results of the hypothesis test through path analysis using a structural equation model, 10 out of 16 hypotheses are accepted. Factors affecting perceived usefulness are training and IS(Information System) support. The analysis results indicate that perceived ease of use is mainly affected by IS support, CEO support, and personal innovativeness among the factors related to the acceptance of the BSC system. This suggests that, contrary to the expectation that the BSC system may be used without difficulty, the management's active support is required in order to attain expected improvement in productivity and work efficiency. This was also pointed out in case studies on the construction of the BSC system in public sectors. On the other hand, perceived ease of use is found to affect perceived usefulness. This supports the results of previous researches on TAM. Perceived ease of use and perceived usefulness are found to affect the attitude towards the use of the system. The intention on continuous use is affected more by perceived usefulness than by the attitude towards the use of system. This result supports the results of previous researches on TAM, showing that the BSC system is utilized substantially in worksites. This study is considered meaningful in that it was actually performed on users at public institutions(firms) that had introduced the BSC system and that it empirically tested hypotheses on the acceptance of the BSC system by applying TAM to the research model.