Browse > Article
http://dx.doi.org/10.6117/kmeps.2015.22.2.021

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property  

Hong, M.-H. (Department of Materials Science and Engineering, Yonsei University)
Park, Ch.-S. (Department of Materials Science and Engineering, Yonsei University)
Park, H.-H. (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.22, no.2, 2015 , pp. 21-26 More about this Journal
Abstract
Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.
Keywords
Mesoporous; $TiO_2$; annealing time; specific surface area; gas sensitivity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, "Chemical Strategies To Design Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures", Chem. Rev., 102, 4093 (2002).   DOI
2 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism", Nature, 359, 710 (1992).   DOI
3 C. Misra, "Industrial Alumina Catalysts, ACS Monograph Series, vol. 184", pp. 133-136, American Chemical Society, Washington, DC (1986).
4 P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, "Generalized syntheses of large-pore mesoporous metal oxides with semi crystalline frameworks", Nature, 396, 152 (1998).   DOI
5 G.-B. Kang, S.-M. Kim, S.-I. Kim, Y.-T. Kim, and J.-H. Park, "Fabrication of Nanopatterned Oxide Layer on GaAs Substrate by using Block Copolymer and Reactive Ion Etching", J. Microelectron. Packag. Soc., 16(4), 29 (2009).
6 G.-B. Kang, S.-I. Kim, Y.-H. Kim, M.-C. Park, Y.-T. Kim, and C.-W. Lee, "Fabrication of Si Nano Dots by Using Diblock Copolymer Thin Film", J. Microelectron. Packag. Soc., 14(2), 17 (2007).
7 Ch.-S Park, U. K. H. Bangi, and H.-H. Park, "Effect of Sulfur Dopants on the Porous Structure and Electrical Properties of Mesoporous $TiO_2$ Thin Films", Mater. Lett., 106, 401 (2013).   DOI
8 Ch.-S. Park, M.-H. Hong, and H.-H. Park, "Effect of Annealing Temperature on the Structural and Electrical Properties of Mesoporous $La_{0.7}Sr_{0.3}MnO_3$", J. Ceram. Soc. Jpn., 122, 608 (2014).   DOI
9 T.-J. Ha, M.-H. Hong, Ch.-S. Park, and H.-H. Park, "Gas Sensing Properties of Ordered Mesoporous $TiO_2$ Film Enhanced by Thermal Shock Induced Cracking", Sens. Actuator B-Chem., 181, 874 (2013).   DOI
10 Z.-Y. Yuan, T.-Z. Ren, A. Vantomme, and B.-L. Su, "Facile and Generalized Preparation of Hierarchically Mesoporous-Macroporous Binary Metal Oxide Materials", Chem. Mater., 16, 5096 (2004).   DOI
11 E. Sotter, X. Vilanova, E. Llobet, M. Stankova, and X. Correig, "Niobium-Doped Titania Nano powders for Gas Sensor Applications", J. Optoelectron. Adv. Mater., 7, 1395 (2005).
12 W. Ostwald, Lehrbuch der allgemeinen chemie, Vol. 2, Part 1. Leipzig, Germany (1896).
13 M. R. Baklanov and K. P. Mogilnikov, "Non-destructive characterisation of porous low-k dielectric films", Microelectron. Eng., 64, 335 (2002).   DOI
14 P. Xu, J. Yang, T. Qiu, and X. Chen, "Effect of annealing on microstructure and properties of $Si_3N_4$-AlN composite ceramics", J. Cent. South Univ. Technol., 18, 960 (2011).   DOI
15 S.-B. Jung, T.-J. Ha and H.-H. Park, "Investigation of the properties of organically modified ordered mesoporous silica films", J. Colloid Interface Sci., 320, 527 (2008).   DOI
16 H. Abrams, "Grain size measurement by the intercept method", Metallography, 4(1), 59 (1971).   DOI
17 Patterson, A. L., "The Scherrer Formula for X-Ray Particle Size Determination", Physical review, 56, 978 (1939).   DOI
18 T.-J. Ha, H.-H. Park, E. S. Kang, S. Shin, and H. H. Cho, "Variations in mechanical and thermal properties of mesoporous alumina thin films due to porosity and ordered pore structure", J. Colloid Interface Sci., 345, 120 (2010).   DOI
19 T.-J. Ha, H.-G. Im, S.-J. Yoon, H. W. Jang, and H.-H. Park, "Pore Structure Control of Ordered Mesoporous Silica Film Using Mixed Surfactants", J. Nanomater., 2011, 326472 (2011).
20 A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, and J.-P. Jolivet, "Size tailoring of $TiO_2$ anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy", J. Mater. Chem., 4, 877 (2003).
21 J. A. Cartwright and L. Lonergan, "Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems", Basin Res., 8, 183 (1996).   DOI
22 W. H. Liu, X. M. Zhang, J. G. Tang, and Y. X. Du, "Simulation of void growth and coalescence behavior with 3D crystal plasticity", Comput. Mater. Sci., 40, 130 (2007).   DOI
23 N. Savage, B. Chwieroth, A. Ginwalla, B. R. Patton, S. A. Akbar, and P. K. Dutta, "Composite n-p semiconducting titanium oxides as gas sensors", Sens. Actuator B-Chem., 79, 17-27 (2001).   DOI