Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6062

Thermoresistant properties of bacterioferritin comigratory protein against high temperature stress in Schizosaccharomyces pombe  

Ryu, In Wang (Department of Biological Sciences, Kangwon National University)
Lee, Su Hee (Department of Biological Sciences, Kangwon National University)
Lim, Hye-Won (Shebah Biotech Inc.)
Ahn, Kisup (Department of Health Administration, Baekseok Culture University)
Park, Kwanghark (Department of Biological Sciences, Kangwon National University)
Sa, Jae-Hoon (Division of Food Analysis, Gangwon Institute of Health & Environment)
Jeong, Kyung Jin (Division of Food Analysis, Gangwon Institute of Health & Environment)
Lim, Chang-Jin (Shebah Biotech Inc.)
Kim, Kyunghoon (Department of Biological Sciences, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.52, no.4, 2016 , pp. 398-405 More about this Journal
Abstract
The Schizosaccharomyces pombe structural gene encoding bacterioferritin comigratory protein (BCP) was previously cloned using the shuttle vector pRS316 to generate the BCP-overexpressing plasmid pBCP10. The present work aimed to evaluate the thermoresistant properties of BCP against high temperature stress using the plasmid pBCP10. When the S. pombe cells were grown to the early exponential phase and shifted from $30^{\circ}C$ to $37^{\circ}C$ or $42^{\circ}C$, the S. pombe cells harboring pBCP10 grew significantly more at both $37^{\circ}C$ and $42^{\circ}C$ than the vector control cells. After 6 h of the shifting to higher incubation temperatures, they contained the lower reactive oxygen species (ROS) and nitrite content, an index of nitric oxide (NO), than the vector control cells. After the temperature shifts, total glutathione (GSH) content and total superoxide dismutase (SOD) activities were much higher in the S. pombe cells harboring pBCP10 than in the corresponding vector control cells. Taken together, the S. pombe BCP plays a thermoresistant role which might be based upon its ability both to down-regulate ROS and NO levels and to up-regulate antioxidant components, such as total GSH and SOD, and subsequently to maintain thermal stability.
Keywords
Schizosaccharomyces pombe; bacterioferritin comigratory protein; glutathione; reactive oxygen species; thermal stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bast, A., Wolf, G., Oberbaumer, I., and Walther, R. 2002. Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia 45, 867-876.   DOI
2 Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
3 Clarke, D.J., Ortega, X.P., Mackay, C.L., Valvano, M.A., Govan, J.R., Campopiano, D.J., Langridge-Smith, P., and Brown, A.R. 2010. Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity. Biochemistry 49, 1319-1330.   DOI
4 Das, P.K. and Bagchi, S.N. 2012. Role of bacterioferritin comigratory protein and glutathione peroxidase-reductase system in promoting bentazone tolerance in a mutant of Synechococcus elongatus PCC7942. Protoplasma 249, 65-74.   DOI
5 Hofmann, B., Hecht, H.J., and Flohe, L. 2002. Peroxiredoxins. Biol. Chem. 383, 347-364.
6 Jeong, W.J., Cha, M.K., and Kim, I.H. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275, 2924-2930.   DOI
7 Kanadia, R.N., Kuo, W.N., Mcnabb, M., and Botchway, A. 1998. Constitutive nitric oxide synthase in Saccharomyces cerevisiae. Biochem. Mol. Biol. Int. 45, 1081-1087.
8 Kig, C. and Temizkan, G. 2009. Nitric oxide as a signaling molecule in the fission yeast Schizosaccharomyces pombe. Protoplasma 238, 59-66.   DOI
9 Kang, G.Y., Park, E.H., Kim, K., and Lim, C.J. 2009. Overexpression of bacterioferritin comigratory protein (Bcp) enhances viability and reduced glutathione level in the fission yeast under stress. J. Microbiol. 47, 60-67.   DOI
10 Kiani-Esfahani, A., Tavalaee, M., Deemeh, M.R., Hamiditabar, M., and Nasr-Esfahani, M.H. 2012. DHR123: an alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168-174.   DOI
11 Kong, W., Shiota, S., Shi, Y., Nakayama, H., and Nakayama, K. 2000. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migaratory protein (Bcp). Biochem. J. 351, 107-114.   DOI
12 Lee, S.P., Hwang, Y.S., Kim, Y.J., Kwon, K.S., Kim, H.J., Kim, K., and Chae, H.Z. 2001. Cyclophin a binds to peroxiredoxins and activates its peroxidase activity. J. Biol. Chem. 276, 29826-29832.   DOI
13 Royall, J.A. and Ischiropoulos, H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355.   DOI
14 Lee, Y.Y., Kim, H.G., Jung, H.I., Shin, Y.H., Hong, S.M., Park, E.H., Sa, J.H., and Lim, C.J. 2002. Activities of antioxidant and redox enzymes in human normal hepatic and hepatoma cell lines. Mol. Cells 14, 305-311.
15 Liao, S.J., Yang, C.Y., Chin, K.H., Wang, A.H., and Chou, S.H. 2009. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures. J. Mol. Biol. 390, 951-966.   DOI
16 Nakagawa, K., Saijo, N., Tsuchida, S., Sakai, M., Tsunokawa, Y., Yokota, J., Muramatsu, M., Sato, K., Terada, M., and Tew, K.D. 1990. Glutathione-S-transferase ${\pi}$ as a determinant of drug resistance in transfectant cell lines. J. Biol. Chem. 265, 4296-4301.
17 Pham, B.P., Jia, B., Lee, S., Ying, S., Kwak, J.M., and Cheong, G.W. 2015. Chaperone-like activity of a bacterioferritin comigratory protein from Thermococcus kodakaraensis KOD1. Protein Pept. Lett. 22, 443-448.   DOI
18 Rouhier, N., Gelhaye, E., Gualberto, J.M., Jordy, M.N., Fay, E.D., Hirasawa, M., Duplessis, S.D., Lemaire, P., Frey, F., Martin, F., et al. 2004. Polar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol. 134, 1027-1038.   DOI
19 Sherman, M.P., Aeberhard, E.E., Wong, V.Z., Griscavage, J.M., and Ignarro, L.J. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308.   DOI
20 Wang, G., Olczak, A.A., Walton, J.P., and Maier, R.J. 2005. Contribution of the Helicobacter pylori thiol peroxidase bacterioferritin comigratory protein to oxidative stress resistance and host colonization. Infect. Immun. 73, 378-384.   DOI
21 Wong, C.M., Zhou, Y., Ng, R.W., Kung, H.F., and Jin, D.Y. 2002. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J. Biol. Chem. 277, 5385-5394.   DOI
22 Wink, D.A., Miranda, K.M., and Espey, M.G. 2001. Cytotoxicity related to oxidative and nitrosative stress by nitric oxide. Exp. Biol. Med. 226, 621-623.   DOI