• Title/Summary/Keyword: structural wood

Search Result 368, Processing Time 0.023 seconds

A study on the Compressive Strength of the Improved Skin-timber (개량 스킨팀버의 압축 강도에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.282-291
    • /
    • 2010
  • As compared with existing center-boring timber, skin timber which be hollowed out of its considerable inner parts has some merits as like short drying time, less developed checks during drying, a advantage of lower MC (8~%), more easy injection of chemicals, a possibility of using as a lighter structural heavy timber including Hanok and heavy timber construction, a possibility for the various living necessaries and furniture materials. However, development of hybrid skin timber is required for using as a value-added materials and giving a confidence for the structural safety of skin timber to general user. Thus, improved pine skin timber (IPST) and improved larch skin timber (ILST) were manufactured using the lighter steel plate possible. And compressive capacity of improved skin timber was analyzed. From the results of this study, the following conclusions have been made: 1. Both of IPST and ILST can give a uniformity of material capacity compared with non-treated skin timber. 2. Both IPST and ILST, there was not statistical significancy among the thickness of steel plate. Therefore, it concluded that it was not necessary to use thicker steel plate. 3. There was also not statistical significancy between IPSR and ILST, so it need not to be selective about the species of improved skin timber. 4. IPST showed various failure types, but most failure types of ILST is a splitting type.

Evaluation of Shear Bond Strength and Adhesive Bond Durability of Mixed Species Structural Glued Laminated Timber (이수종 구조용집성재의 전단접착력 및 접착내구성 평가)

  • Shim, Sangro;Yeo, Hwanmyeong;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.87-96
    • /
    • 2005
  • This study was carried out to evaluate the shear bond strength and adhesive bond durability of structural glued laminated timber (glulam) manufactured with mixed species lumber of Korean red pine, Korean pine and Japanese larch, using resorcinol adhesive and water-based polymeric-isocyanate adhesive (WPI). Each board used as a glulam lamina was graded by visual inspection. The visual lumber grade of the all species was very low due to the large size and number of knots and the steep slope of grain. In view of the results, appropriate pruning, sawing and drying processes might be needed to produce high grade lamina lumber with small knot size and drying defect free. Shear bond strength of every tested glulam specimen ranged between 7.9 and $9.9N/mm^2$, and much higher than the Korean Standard (KS) for glulam shear bond strength, $7.1N/mm^2$. There was not much shear bond strength difference between wood/resorcinol and wood/WPI. The resorcinol adhesive bond durability exceeded KS requirements. However, delamination on the end-grain surfaces of WPI glulam submerged in both room temperature and boiling water severely occurred, and its durability did not meet KS requirements. Further investigations may be required, and special care should be taken, to ensure long service life of WPI glulam used for exterior application. Results of this study are expected to be useful for improvement of mechanical properties and structural performance of mixed species glulam.

Strength Properties of Old Korean Larch Pile (고(古)부재 잎갈나무 말뚝의 재질 특성)

  • Hwang, Kweonhwan;Park, Byung-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.23-30
    • /
    • 2007
  • Round piles of Korean larch were excavated from the foundation of ex-Chosunchongdokbu (ex-Chosun Governer-General Building), which was constructed in 1916 and dismantled later in 1996. By the record (Huh, 1996), the Korean larch logs were logged from the Yalu river area near Mt. Baekdu in North Korea. At present, however, Korean larch is not so popular in South Korea. The latewood ratio profiles and strength properties (longitudinal compression, shear, longitudinal tensile, and bending) were obtained. The ratio of latewood from pith to bark increased up to 25 years, and then it showed constant tendency at 40% with some variances. From the microscopic observation, however, the latewood ratio decreased from the heartwood to the sapwood. Compression strength was greater and bending strength was a little lower than the previous reports (references 13~15), which might be attributed to the strength reduction of old structural members by aging or damage in the compression specimens than the bending ones. The flat-grained specimens for the shear and tension test showed higher coefficient of variation (COV) than the edge-grained ones. For the better comparison of results, in case of shear and tensile strength tests, the strength values of the edge-grained specimens were thought to be adopted rather than those of flat-grained ones.

Effect of Zephyr Producing Method on Properties of Bamboo Zephyr Boards (대나무 Zephyr의 제조 조건에 따른 보드의 물성비교)

  • Kim, Yu-Jung;Roh, Jeang-Kwan;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.24-30
    • /
    • 2003
  • In order to develop structural 'bamboo zephyr board', properties of boards produced by various methods making zephyr were estimated. All of boards were tested with KS(Korean Standards) F 3014 Particle board, and results were summarized as follow. The zephyr boards produced by final 1.5 mm roller space had the best properties(MOR, MOE and IB strength) among boards produced by different final roller space. Also, they had the best properties(MOR and MOE) in bending test after 1 hour soaking treatment after 2 hour-boiling in water, which were similar to properties of boards in dry-condition. Thickness swelling(TS) of all boards was less than 12% required to the Korean Standards A 3014. Zephyr boards produced by final 1.5 mm roller space also had the lowest values among all of boards. Boards produced by non-treatment (in green condition) had the better strength than those of boards produced by different pre-treatment methods(boiling in water and in 0.3% NaOH) in bending test.

Distribution Characteristics of Bending Properties for Visual Graded Lumber of Japanese Larch (육안등급으로 구분된 낙엽송 제재목의 휨성능 분포 특성)

  • Lee, Jun Jae;Kim, Gwang Chul;Kim, Kwang Mo;Oh, Jung Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.72-79
    • /
    • 2003
  • In reliability based design(RBD) method, the distribution characteristics of mechanical properties of material are basic input variable. Therefore, distribution type and parameters of mechanical properties should be determined accurately. Until now, the properties were derived from tests with small, clear specimens. However, the test conditions should emulate as nearly as possible the way in which the timber would be used in practice and the test results should, as closely as possible, reflect the structural end use conditions to which the timber products would be subjected. In this study, structural timbers (38mm by 140mm, 3.0m long) were graded by visual assessment of growth characteristics and defects. And then bending tests were conducted on 498 structural size timbers. For each grade, the distribution type and the parameters of mechanical properties were determined for each grade. For the determination of best-fit distribution type, comparing of square error between distribution types and KS test were conducted. Best-fit distribution type of bending strength(MOR) is weibull distribution for all grade. In case of MOE, normal distribution is best-fit.

Analysis and design of metal-plate-connected joints subjected to buckling loads

  • Hussein, R.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.5
    • /
    • pp.417-432
    • /
    • 2000
  • A comprehensive analytic study has been conducted to investigate the instability problems of metal-plate-connected (MPC) joints in light frame trusses. The primary objective in this study is to determine the governing factors that constitute the buckling of the metal connectors and their effects on the structural response of joints. Another objective is to recommend design curves for the daily structural design of these joints. The numeric data presented in this paper has emerged from a broad base that was founded on over 350 advanced computer simulations, and was supported by available experimental results obtained by others. This basic-to-applied research includes practical engineering parameters such as size of gaps, shear lengths, gauge (plate thickness) of connectors, size of un-braced areas, failure modes, and progressive disintegration of joints. Square-end members have been emphasized though the results cover the custom-made fitted joints. The results indicate that chord shears cause and dominate the buckling of MPC joints, and the shear length has a more pronounced effect than the size of gaps. Further, large gauges and small un-braced areas improve the buckling response. Several practical recommendations have been suggested throughout the paper such as keeping the ratio of gap/shear length below 3/4 for improving the buckling strength. The study reveals that multi-area joints should not be simplified as single web-to-chord MPC joints such as keeping the ratio of gap/shear length below 3/4 for improving the buckling strength, even where one web is in tension and the other in compression. Finally, the results obtained from this study favorably agree with experimental data by others, and the classic buckling theories for other structural components.

Effective Utilization of Pine Wood for the Manufacturing of High Valued Product(I) -Bending Strength Properties of Laminated lumber Produced from Small Lumber of Pinus densiflora- (소나무재의 효율적 이용을 위한 고부가 가치화 방안(I) -소나무 소경재를 이용한 적층재의 휨 강도 특성-)

  • 홍순일;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.78-83
    • /
    • 1999
  • This study was carried out to investigate the strength and techanical feasibility of laminated lumber from small-diametered Pinus densiflora. Small lumber is currently not used for structural laminated lumber sonstruction, but its properties may of elasticity(MOE). Twenty specimens were compared for each beam from laminae. The results showed that actual beam MOE values exceeded slightly the preducted values. Based on the evaluation and analysis of thirty six Pinus densiflora laminated beams, a bending strength of 673 kgf/$cm^{2}$, and MOE of 98,200 kgf/$cm^{2}$ were obtained. It was suggested that this small lumber may be a candidate for structural laminated beam construction to provide the proper combinations of laminae.

  • PDF

Modification of cell wall structural carbohydrate in the hybrid poplar expressing Medicago R2R3-MYB transcription factor MtMYB70

  • Kim, Sun Hee;Choi, Young Im;Jin, Hyunjung;Shin, Soo-Jeong;Park, Jong-Sug;Kwon, Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • The isolation, cloning, and characterization of an R2R3-MYB transcription factor gene (MtMYB70) from the model legume Medicago truncatula is reported. MtMYB70 consists of a 768-bp coding sequence corresponding to 255 amino acids. Sequence alignment revealed that MtMYB70 cDNA contains conserved R2R3-type MYB domains with highly divergent C terminal regions. MtMYB70 was found to have relatively low sequence homology with known R2R3-MYB genes. Phylogenetic analysis placed the R2R3-MYB domain of MtMYB70 closest to PtMYB1, a known activator of lignin biosynthesis. Overexpression of MtMYB70 under the control of the 35S promoter in transgenic poplar did not cause a significant difference in total lignin content relative to the control, but glucan content was significantly increased in transgenic poplar. Therefore, MtMYB70 might have regulatory role in the biosynthesis of cell wall structural carbohydrates.

Development of Temporary Arch Bridges by Using Snap-fit GFRP Composite Decks (조립식 복합소재 데크를 이용한 아치가교 개발)

  • Cho, Yong-Sang;Lee, Sung-Woo;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Glass-fiber reinforced polyester (GFRP) composite material is a promising alternative to existing construction materials such as steel, concrete and wood due to light weight and high durability of GFRP composite material. If a temporary arch bridge is built by GFRP composite deck, rapid construction of the bridge and reuse of the GFRP composite deck are possible. In this paper, we develop a type of temporary arch bridges that can be built by easy assembling of GFRP composite decks. For this purpose, several possible types of temporary arch bridges are suggested and verified by finite element analysis.

Seismic Capacity Evaluation of Wood Structure Using Soil-Wall Test (흙벽 실험에 의한 목조 건축물의 내진성능 평가)

  • Kim, Hye-Won;Yang, Won-Jik;Oh, Sang-Hoon;Lee, Jung-Han;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.409-412
    • /
    • 2010
  • 본 연구는 목조 건축물 흙벽의 수평가력실험 결과를 이용한 내진성능 평가를 목적으로 한다. 흙벽 실험시험체는 기둥과 보 결합방식에 따라 민도리, 초익공, 장여방식으로 분류되고 벽체 형태에 따라 창문, 문, 전면 벽체, 인방 부재수 등으로 계획을 하였다. 12개 흙벽 시험체의 가력결과, 전면 벽체 시험체는 변위각 1/30에서 가장 큰 강성 저하율을 보이며 중인방과 수직재가 있는 벽체는 에너지 소산능력이 가장 큰 것으로 나타났다. 기존 연구로부터 목조 건축물 항복점 평가방법을 이용하여 등가탄소성 곡선으로 나타낸 전단내력은 민도리방식이 프레임과 전면 벽체일 경우 가장 크고, 전단응력은 벽체 개구율에 따라 다르게 나타났다. 실험결과로부터 적용 대상 건축물의 X, Y방향 구조성능을 산출하고 구조내진지표와 역량스펙트럼을 이용하여 내진성능 평가를 실시한 결과, 대상 목조 건축물은 내진성이 있음으로 평가되었다.

  • PDF