• Title/Summary/Keyword: structural safety performance

Search Result 1,011, Processing Time 0.027 seconds

Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading

  • Mostafaei, Hasan;Behnamfar, Farhad;Alembagheri, Mohammad
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.295-317
    • /
    • 2020
  • Investigation of the stability of arch dam abutments is one of the most important aspects in the analysis of this type of dams. To this end, the Bakhtiari dam, a doubly curved arch dam having six wedges at each of its abutments, is selected. The seismic safety of dam abutments is studied through time history analysis using the design-based earthquake (DBE) and maximum credible earthquake (MCE) hazard levels. Londe limit equilibrium method is used to calculate the stability of wedges in abutments. The thrust forces are obtained using ABAQUS, and stability of wedges is calculated using the code written within MATLAB. Effects of foundation flexibility, grout curtain performance, vertical component of earthquake, nonlinear behavior of materials, and geometrical nonlinearity on the safety factor of the abutments are scrutinized. The results show that the grout curtain performance is the main affecting factor on the stability of the abutments, while nonlinear behavior of the materials is the least affecting factor amongst others. Also, it is resulted that increasing number of the contraction joints can improve the seismic stability of dam. A cap is observed on the number of joints, above which the safety factor does not change incredibly.

Seismic Performance Assessment of High-Rise Building installed with Multiple Active Tuned Mass Dampers (다중 능동형 동조질량감쇠기가 설치된 고층빌딩의 내진성능 평가)

  • Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.89-97
    • /
    • 2017
  • The tuned mass damper (TMD) system was first proposed as an efficient vibration control method for high-rise buildings, and multiple TMD (MTMD) system was then proposed for the purpose of improving the robust performance. Thereafter, the active TMD (ATMD) is proposed to improve the vibration control performance over the TMD and MTMD systems. However, this system may experience an system-instability problem in case of the actuator malfunction. In order to overcome such limitations of actuator malfunction causing the instability of the structural system, in this study, we investigate the feasibility of the multiple ATMD (MATMD) system that facilitates both advantages of the MTMD and ATMD. Numerical example demonstrates that, when the proposed system is designed to have the same capacity as the ATMD, it shows a similar control performance to the ATMD, but also has very good adaptive control performance against the emergency situations such as actuator failures.

Nurses' Colleague Solidarity and Job Performance: Mediating Effect of Positive Emotion and Turnover Intention

  • Jizhe Wang;Shao Liu;Xiaoyan Qu;Xingrong He;Laixiang Zhang;Kun Guo;Xiuli Zhu
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.309-316
    • /
    • 2023
  • Background: Job performance is known as an essential reflection of nursing quality. Colleague solidarity, positive emotion, and turnover intention play effective roles in a clinical working environment, but their impacts on job performance are unclear. Investigating the association between nurses' colleague solidarity and job performance may be valuable, both directly and through the mediating roles of positive emotion and turnover intention. Methods: In this cross-sectional study, a total of 324 Chinese nurses were recruited by convenience sampling method from July 2016 to January 2017. Descriptive analysis, Spearman's correlation analysis, and the structural equation model were applied for analysis by SPSS 26.0 and AMOS 24.0. Results: A total of 49.69% of participants were under 30 years old, and 90.12% of participants were female. Colleague solidarity and positive emotion were positively connected with job performance. The results indicated the mediating effects of positive emotion and turnover intention in this relationship, respectively, as well as the chain mediating effect of positive emotion and turnover intention. Conclusions: In conclusion, dynamic and multiple supportive strategies are needed for nurse managers to ameliorate nursing job performance by improving colleague solidarity and positive emotion and decreasing turnover intention based on the job demand-resource model.

Development of Type 4 Composite Pressure Vessel by using PET Liner for Self-contained Breathing Apparatus (PET 라이너를 적용한 공기호흡기용 타입 복합재료 4 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Cho, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, we solved the human hazard problem of aluminum liner by applying plastic PET liner which is widely used as a material for food and beverage containers in the market. In order to reinforce dome area by using low strength / high elongation plastic liner, The aluminum boss was covered on the plastic liner surface. In order to predict the performance of the developed product, the structural analysis was carried out by applying the three - dimensional laminated solid element, and the soundness of the product was verified through the prototype performance test.

Numerical Analysis of Palladium added Carbon Fiber/Al using Extended Finite Element Method and Multiscale Technique (확장유한요소법과 멀티스케일 기법을 통한 팔라듐 첨가 탄소섬유/알루미늄 적층구조에 대한 수치해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.2
    • /
    • pp.7-14
    • /
    • 2019
  • A palladium can adsorb hydrogen and detect leaking hydrogen through changes in color and electrical resistance. This study is to evaluate the structural behavior of carbon fiber adding palladium composite materials used in the hydrogen storage vessel. A multi-scale analysis technique was used to analyze accurately the behavior of each material in relation to the microscopic composition. The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. Also the crack evaluation was performed by XFEM analysis to confirm the reinforcement performance of aluminum as a liner of the hydrogen vessel. The results show that the addition of the palladium material increased the macroscopic stress, but microscopically the carbon fiber stress was reduced. It means the performance improvement of the palladium added carbon fiber/Al composite.

Probabilistic Structure Safety Assessment Method on the Explosion of Power Facilities (발전시설물 폭발에 대한 확률적 구조물 안전성평가 방안)

  • Kim, Jung Hoon;Kim, Young Gu;Kang, Seung Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.317-317
    • /
    • 2014
  • The structure performance of a sealed power facilities and the explosion simulation contains significant amounts of scatter, and variability has been characterized in material properties of the structure, a sealed space density, combustible gas volume, gas concentrativeness, ignition site, and gas volume. In order to deal with such uncertainties, structural reliability analysis calculates the failure probability and the reliability index relevant to selected limit states providing quantitative measures of these uncertainties. In this study, structure safety assessment method on the explosion of a sealed power facilities was proposed by using the response surface method (RSM).

  • PDF

A Study on Structural Safety of the Solid Fuel Grain by Hot Flow inside a Hybrid Rocket Combustor (Multi-port 하이브리드 로켓 연소기에서 고온 산화제 유동에 의한 고체연료의 구조적 안전성에 대한 연구)

  • Do, Gyu-Sung;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • This paper describes the structural safety of solid fuel in the Hybrid Rocket Motor (HRM). Hybrid rocket combustion has the distinct regression characteristics which include the process of thermal pyrolysis and fuel vaporization. Most of all, this regression characteristics would structurally affect the strength of the fuel having a multi-port configuration, and even may cause the breaking from the fuel grain. This problem would probably influence the performance and operating safety of HRM. Therefore, for the safe operation of HRM, the critical port radius which determines the structurally safe region was discussed from the heat analysis of the solid fuel.

  • PDF

A Study on the Safety Evaluation of Design for Piping Materials(III) (배관용 재료의 설계시 안전성 평가에 관한 연구(III))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • For the assessment of fracture behaviors of structural components, various fracture mechanics parameters have been applied to date. New approaches to analyze structural fracture performance under elastic-plastic condition have been proposed by the development of testing methods for characterization of material behavior which is defying to the analysis by conventional fracture parameters. In this study, on the assumption that, initiation of crack propagation of a piping materials occurs when the crack tip strain field reaches "the local fracture strain", following two major issues are discussed ; 1) The relationship between the critical value of J-integral($J_{IC}$) and the local fracture strain (${\varepsilon}_c$) in uniaxial tensile test in the region of maximum reduction area was described. 2) To proved the validity of above relations a series of tests were performed under various temperature and on the different piping materials.materials.

  • PDF

The Design of Initial Member Sections and the Evaluation of Seismic Performance for Architectural Steel Structures with Brace Hysteretic Dampers (내진 댐퍼 브레이스를 가진 건축 강구조물의 초기 분재단면 설계 및 내진성능 평가)

  • Lee Sang-Ju;Lee Dong-Woo;Yang Jae-Guen;Han Sang-Eul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.619-627
    • /
    • 2005
  • An initial member sections of steel structures is selected by experience of expert building structural designers. And appropriate member section is designed by repeat calculation through structural analysis. Therefore an initial assumption of member section is necessary for saving the time for structural design and is important to acquire safety of building structures. Also brace damper are generally used to prevent or decrease structural damage by its hysteretic behavior in building structures subjected to strong earthquake. Based on plastic design, the initial section of members for architectural steel structures with brace hysteretic dampers is presented and seismic effect of structural behavior by the ratio of damper stiffness to structural story stiffness is estimated in this paper.

  • PDF

Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis (15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계)

  • Kang, Hyun Su;Oh, Jeongsu;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2014
  • This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.