• Title/Summary/Keyword: structural safety performance

Search Result 1,011, Processing Time 0.032 seconds

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

Safety Performance Assessment for a Aged Building (노후 건축물의 안전성능 평가항목)

  • Kwon Dong-Chan;Lee Yong-Jae;Lee Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.296-300
    • /
    • 2004
  • As a building aged, overall performance considering structural safety, equipment safety and fire safety is lowering gradually. Since the building performance and the overall value of the building change as time elapse, exact safety performance of the building should be evaluated not only maintaining the building efficiently and also preventing disputes between buyer and seller of the building. We suggest major elements for assessing building's safety performance through surveying literatures, interviewing experts, reviewing existing assessment models, The assessment elements proposed here ate comprised of structural safety, equipment safety, fire safety, fire protection and fire escape, etc. This study helps to make a safety performance assessment criteria for a building.

  • PDF

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

Performance Evaluation of Seismic Stopper using Structural Analysis and AC156 Test Method

  • Ryu, Hyun-su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2020
  • Recently, studies have been actively conducted on seismic design and improvement of the seismic performance of bridges, buildings, factories, and plants. In particular, heavy items that are being manufactured or waiting to be shipped from factories (such as generators, engines, and boilers) must be equipped with seismic stoppers to prevent them from moving or falling during an earthquake. Seismic stoppers should be suitably determined by the size and weight of these heavy items; however, they have no general design standard. In this study, structural analyses and seismic tests were conducted to evaluate the performance of newly designed seismic stoppers. Structural analysis was performed on three stopper models to estimate the external load at which the yield stress of the material was not exceeded. Based on the analysis results, a seismic test of the stopper was carried out in accordance with the AC156 test method. Finally, product specifications for all three seismic stopper models were determined and their static/dynamic load performance was evaluated.

Structural performance monitoring of an urban footbridge

  • Xi, P.S.;Ye, X.W.;Jin, T.;Chen, B.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.129-150
    • /
    • 2018
  • This paper presents the structural performance monitoring of an urban footbridge located in Hangzhou, China. The structural health monitoring (SHM) system is designed and implemented for the footbridge to monitor the structural responses of the footbridge and to ensure the structural safety during the period of operation. The monitoring data of stress and displacement measured by the fiber Bragg grating (FBG)-based sensors installed at the critical locations are used to analyze and assess the operation performance of the footbridge. A linear regression method is applied to separate the temperature effect from the stress monitoring data measured by the FBG-based strain sensors. In addition, the static vertical displacement of the footbridge measured by the FBG-based hydrostatic level gauges are presented and compared with the dynamic displacement remotely measured by a machine vision-based measurement system. Based on the examination of the monitored stress and displacement data, the structural safety evaluation is executed in combination with the defined condition index.

Analysis of 3D Laser Scanner Input Performance in Structual Safety Diagnosis (구조안전진단에서의 3D 레이저 스캐너 투입 성과 분석)

  • Seong, Do-Yun;Baek, In-Soo;Kim, Jea-Jun;Ham, Nam-Hyuk
    • Journal of KIBIM
    • /
    • v.11 no.3
    • /
    • pp.34-44
    • /
    • 2021
  • This study quantitatively analyzes the work performance of the structural safety diagnosis team that diagnoses pipe racks. To this end, a method for evaluating the performance of the structural safety diagnosis team using the queuing model was proposed. For verification, the case of applying the existing method and the method of introducing a 3D laser scanner for one site was used. The period, number of people, and initial investment cost of each project were collected through interviews with case project experts. As a result of analyzing the performance of the structural safety diagnosis team using the queuing model, it was possible to confirm the probability of delay in the work of each project and the amount of delayed work. Through this, the cost (standby cost) when the project was delayed was analyzed. Finally, economic analysis was conducted in consideration of the waiting cost, labor cost, and initial investment cost. The results of this study can be used to decide whether to introduce 3D laser scanners.

Structural Relationship between ESG Management and Safety Management and Business Performance : Focused on Regional Airport (ESG경영과 안전경영 그리고 경영성과의 구조적 관계 : 지역 공항을 중심으로)

  • Jo, Young Jin;Sung, Haeng Nam;Kwon, Jin Tack
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.51-67
    • /
    • 2023
  • Purpose While research on ESG management in airlines is ongoing, research on airports, especially regional ones, remains insufficient. This study's point of departure is the inquiry into how the local airport industry is addressing global environmental shifts and engaging in ESG management activities. Design/methodology/approach Based on previous studies, the relationship between ESG(Environmental, Social, Governance) management, safety management, reputation, and management performance was analyzed. We analyzed 578 questionnaires through structural equation modeling using AMOS 21.0 to test our hypotheses. Findings First, environmental, social, governance, and safety management have a positive effect on both reputation and business performance. Second, reputation has affected business performance. Third, reputation was affected in the order of governance management, safety management, environmental management, and social management.

Performance Evaluation of Steel and Composite Safety Barrier for Bridge by Vehicle Crash Simulation (차량 충돌 시뮬레이션에 의한 강재 및 복합소재 교량용 방호울타리 성능 비교)

  • Kim, Seung-Eock;Cho, Pan-Kyu;Hong, Kab-Eui;Jeon, Shin-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • A composite safety barrier for bridge has been developed and the performance of the composite safety barrier for bridge has been compared with the steel safety barrier for bridge through computer simulation. As the structural strength performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that the deformation of the composite safety barrier for bridge is 17.0% of that of the steel safety barrier for bridge. As the passenger protection performance, the composite safety barrier for bridge is superior to the steel safety barrier for bridge according that THIV and PHD of the composite safety barrier for bridge are 47.1% and 49.0% respectively of those of the steel safety barrier for bridge. As the behavior of the vehicle after crash, the composite safety barrier for bridge is superior to the steel safety barrier for bridge showing the increased exit velocity and the reduced exit angle. Both of the steel and composite safety barrier for bridge are not scattered in the analysis.

A Study on the Performance Standards for a Natural Type Landscaping Rocks by Utilizing GFRC(Glass Fiber Reinforced Concrete) (유리섬유강화콘크리트를 이용한 자연형 경관석의 성능기준 연구)

  • Yoon, Bok-Mo;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.33-42
    • /
    • 2012
  • This study aims to establish the performance standard for natural type landscape stone GFRC. The required performance such as material performance, structural safety performance, durability performance, and landscape performance were selected through an examination of domestic and overseas performance related references and examples, and through the questionnaires obtained from 40 experts, and the verified items and performance standards were proposed. Among the required performances, the material performance(glass fiber content, air-dried gravity), structural safety performance(flexural strength, compressive strength), durability performance(crack, corrosion resistance), and landscape performance(texture, efflorescence) were selected through the questionnaires obtained from the experts. In the case of material performance and structural safety performance with the corresponding standards that existed, final performance evaluation standard was proposed by conducting a test and comparing it with the existing standard sample, and in the case of durability performance and landscape performance on which standard does not existed, they were verified by measuring directly through field examination of formative landscape items such as artificial waterfall etc. In this study, performance standard for the material on natural type landscaping rocks GFRC and items which can be evaluated after construction such as material performance, structural safety performance, durability performance, landscape performance, and so forth were proposed, however, follow up study for pro-environmental and ecological performance standard which were recently gaining force would be required through a continuous monitoring for the construction samples afterwards.

The Suitability Assessment of Performance Standards on Landscaping Rocks of GRS(Glass Fiber Reinforced Slag) Panels (유리섬유강화슬래그(Glass-fiber Reinforced Slag)의 경관석 성능 적합성 평가)

  • Yoon, Bok-Mo;Lee, Yong-Bok;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2013
  • This study was carried out to verify the suitability of GRS(Glass-fiber Reinforced Slag) as natural type landscape stone according to the material property and structural safety performance standards. The structural safety performance of the GRS panel showed 12.4MPa and 16.2MPa each in flexural strength at 2 and 3% content of glass fiber while the flexural strength at 4 and 5% of glass fiber content showed 26.9MPa, and 30.2MPa, respectively, all satisfying the standards. In addition, air-dried gravity was found to be 1.82~1.89 in measuring range at 2~5% level of glass fiber content, satisfy the existing standards 1.8~2.3. In structural safety performance, the range of flexural strength consequent on glass fiber content was surveyed to be 12.8~30.2MPa, all satisfying the performance standards, while 10MPa and more while the compressive strength range was found to be 41.5~53.3MPa, all satisfying the performance standards, 40~60MPa. This study judged the suitability of only the items for a property of matter of landscape stone GRS by applying the natural-form landscape stone GFRC material standard, but in case an installation constructed with GRS material comes into existence later, there should be comprehensive performance guidelines through the research on durability, landscape performance and environmental and ecological performance.