• 제목/요약/키워드: structural interpretation

검색결과 258건 처리시간 0.028초

Frequency Window Method에 의한 Secondary 구조 시스템의 진동특성 (Frequency Window Method for the Vibration of Secondary Structural Systems)

  • 민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1991년도 춘계학술대회논문집; 한국해사기술연구소, 대전; 1 Jun. 1991
    • /
    • pp.153-158
    • /
    • 1991
  • Recently, demands on light weight, high strength, and low noise or vibration have led to the design of complicated structural systems. Although finite elements [1], mode synthesis [2], and statistical energy analysis [3] can be used to compute the dynamic response of such systems, the structural complexity has made the interpretation of the results of such analysis difficult. Many researchers in dynamic analysis have sought to further develop existing theories or develop alternate methods to obtain greater insight in the behavior of large massive primary systems (P systems) with connected light secondary systems (S systems). Some recent research includes work by Sackman and Kelly [4], Sackman et al.[5], Der Kiureghian et al.[6], and Igusa and Der Kiureghian [7-9] who have combined mode synthesis concepts, matrix algebraic theory, and perturbation methods for characterizing weakly-coupled structural systems. A major limitation of these works are that they are limited to lumped mass S systems. In this paper, the general ideas in the Refs.[4-9] are used to study continuous S systems and the method to reduce the complexity, studied in the works by Igusa, Achenbach, and Min [10,11], is developed into the frequency window method.

  • PDF

Structural performance of cold-formed steel composite beams

  • Dar, M. Adil;Subramanian, N.;Anbarasu, M.;Dar, A.R.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.545-554
    • /
    • 2018
  • This study presents a novel method of improving the strength and stiffness of cold-formed steel (CFS) beams. Flexural members are primary members in most of the structures. Hence, there is an urgent need in the CFS industry to look beyond the conventional CFS beam sections and develop novel techniques to address the severe local buckling problems that exist in CFS flexural members. The primary objective of this study was to develop new CFS composite beam sections with improved structural performance and economy. This paper presents an experimental study conducted on different CFS composite beams with simply supported end conditions under four point loading. Material properties and geometric imperfections of the models were measured. The test strengths of the models are compared with the design strengths predicted by using Australian/New Zealand Standard for cold-formed steel structures. Furthermore, to ensure high precision testing, a special testing rig was also developed for testing of long span beams. The description of test models, testing rig features and test results are presented here. For better interpretation of results, a comparison of the test results with a hot rolled section is also presented. The test results have shown that the proposed CFS composite beams are promising both in terms of better structural performance as well as economy.

Developing an integrated software solution for active-sensing SHM

  • Overly, T.G.;Jacobs, L.D.;Farinholt, K.M.;Park, G.;Farrar, C.R.;Flynn, E.B.;Todd, M.D.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.457-468
    • /
    • 2009
  • A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software.

Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept

  • Bakas, Nikolaos
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.15-29
    • /
    • 2017
  • The recently introduced index Ratio Of Torsion (ROT) quantifies the base shear amplification due to torsional effects on shear cantilever types of building structures. In this work, a theoretical proof based on the theory of elasticity is provided, depicting that the ratio of torsion (ROT) is independent of the forces acting on the structure, although its definition stems from the shear forces. This is a particular attribute of other design and evaluation criteria against torsion such as center of rigidity and center of strength. In the case of ROT, this evidence could be considered as inconsistent, as ROT is a function solely of the forces acting on structural members, nevertheless it is proven to be independent of them. As ROT is the amplification of the shear forces due to in-plan irregularities, this work depicts that this increase of internal shear forces rely only on the structural topology. Moreover, a numerical verification of this theoretical finding was accomplished, using linear statistics interpretation and nonlinear neural networks simulation for an adequate database of structures.

비정질 합금의 조성분리가 소성에 미치는 영향: 변형국부화 관점에서의 해석 (Effect of the Compositional Modulation on the Plasticity of Amorphous Alloys: Shear Localization Viewpoint Interpretation)

  • 이미림;박경원;사현제;이재철
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.687-693
    • /
    • 2009
  • Experiments have demonstrated that a moderate amount of Be added to $Zr_{57.5}Cu_{38.3}Al_{4.2}$ amorphous alloy enhances the plasticity of the alloy. In particular, $Zr_{54}Cu_{36}Al_{4}Be_{6}$ alloy exhibited 19% of strain to fracture along with a strength exceeding 2 GPa. Energy dispersive x-ray spectroscopy conducted on the $Zr_{54}Cu_{36}Al_{4}Be_{6}$ alloy exhibited the presence of compositional modulation, indicating that nm-scale phase separation had occurred at local regions. In this study, the role played by the nm-scale phase separation on the plasticity was investigated in terms of structural disordering, structural softening and shear localization in order to better understand the structural origin of the enhanced plasticity shown by the developed alloy.

Validation and Modeling of Drivers and Barriers of Multivendor ATM Technology in India from Suppliers' Perspectives

  • Jyotiranjan Hota;Saboohi Nasim
    • Asia pacific journal of information systems
    • /
    • 제30권2호
    • /
    • pp.374-396
    • /
    • 2020
  • The purpose of the paper is to apply Total Interpretive Structural Modeling (TISM) used to develop a hierarchy among the key drivers and barriers to multivendor ATM Technology adoption in India from the perspectives of suppliers. TISM approach is an extension of Warfield's (IEEE Transactions: System, Man & Cybernetics 4:405-17, 1974) Interpretive Structural Modeling(ISM) approach. Based on the literature, drivers and barriers for adoption of Multivendor ATM Technology are identified. TISM is used to develop a hierarchical model which states the interpretation of relationship among these drivers and barriers. Hierarchies of all relevant drivers and barriers are developed and significant interrelationship was found out. Implications for the researchers and Industry Practitioner are highlighted. For Researchers, TISM methodology facilitates to further carry out exploratory studies by identifying the factors in technology adoption domain and focus their interactions through hierarchical structures. For Practitioners with suppliers, a list of relevant barriers and drivers to adoption of this technology in India are indications to take a decision to adopt Multivendor ATM Technology in their respective suppliers. The proposed Model developed through qualitative Modeling technique has been accomplished from the perspectives of suppliers in India in the domain of multivendor ATM Technology for the first time in ATM Banking as a contribution to the Literature.

Review on the structural understanding of the 10S myosin II in the era of Cryo-electron microscopy

  • Anahita Vispi Bharda;Hyun Suk Jung
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.9.1-9.5
    • /
    • 2022
  • The compact smooth muscle 10S myosin II is a type of a monomer with folded tail and the heads bending back to interact with each other. This inactivated form is associated with regulatory and enzymatic activities affecting myosin processivity with actin filaments as well as ATPase activity. Phosphorylation by RLC can however, shuttle myosin from the inhibited 10S state to an activated 6S state, dictating the equilibrium. Multiple studies contributed by TEM have provided insights in the structural understanding of the 10S form. However, it is only recently that the true potential of Cryo-EM in deciphering the intramolecular interactions of 10S myosin state has been realized. This has led to an influx of new revelations on the 10S inactivation, unfolding mechanism and association in various diseases. This study reviews the gradual development in the structural interpretation of 10S species from TEM to Cryo-EM era. Furthermore, we discuss the utility of Cryo-EM in future myosin 10S studies and its contribution to human health.

Influence of Jahn-Teller Distortion on the Magnetic Coupling in Oxalato-Bridged Copper(II) Dimers: An Orbital Interpretation of the Superexchange Mechanism

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1965-1968
    • /
    • 2005
  • Extended H$\ddot{u}$ckel molecular calculations have been used to analyze how the magnitude of exchange coupling is influenced by the structural distortions in a series of dinuclear six-coordinate copper(II) complexes bridged by the planar bis-bidentate oxalate anion. Copper(II) ions have distorted octahedral surroundings, one being axially elongated and the other compressed. The magnetic interaction is strong in the former complexes and very weak in the latter. This is interpreted as resulting from a switching of magnetic spin orbitals due to the structural distortions (bond elongation or compression) of the copper sites.

지하(地下) 석탄층(石炭層) 구조(構造)를 이용한 도계(道溪) 지역의 단층과 습곡구조의 특성 (Characteristics of Faults and Folds by Using Subsurface Structural Data in Dogye Area, Korea)

  • 이동우;우경식;서광수
    • 자원환경지질
    • /
    • 제27권3호
    • /
    • pp.313-321
    • /
    • 1994
  • Structural interpretation by using subsurface attitude of coal seam and outcrop patterns of folds and faults shows that wrench and thrust tectonics took place simultaneously in the study area. From the interference patterns of fold axes, three generations of folding are suggested: $F_1$ (NE-SW), $F_2$ (N-S), and $F_3$ (E-W). Differential displacement of rock mass from north to south yields to E-W fold and Osypcheon Fault. Geometry of subsurface coal seam show different patterns comparing to those of surface outcrop because of shallow-depth crustal shortening which took place post Cretaceous.

  • PDF

Existing concrete dams: loads definition and finite element models validation

  • Colombo, Martina;Domaneschi, Marco;Ghisi, Aldo
    • Structural Monitoring and Maintenance
    • /
    • 제3권2호
    • /
    • pp.129-144
    • /
    • 2016
  • We present a methodology to validate with monitoring data finite element models of existing concrete dams: numerical analyses are performed to assess the structural response under the effects of seasonal loading conditions, represented by hydrostatic pressure on the upstream-downstream dam surfaces and thermal variations as recorded by a thermometers network. We show that the stiffness effect of the rock foundation and the surface degradation of concrete due to aging are crucial aspects to be accounted for a correct interpretation of the real behavior. This work summarizes some general procedures developed by this research group at Politecnico di Milano on traditional static monitoring systems and two significant case studies: a buttress gravity and an arch-gravity dam.