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1. Introduction

Recently, demands on light weight, high
strength, and low noise or vibration have led to
the design of complicated structural systems.
Although finite elements {1], mode synthesis [2],
and statistical energy analysis [3] can be used to
compute the dynamic response of such systems,
the structural complexity has made the
interpretation of the results of such analyses
difficult. Many researchers in dynamic analysis
have sought to further develop existing theories
or develop alternate methods to obtain greater
insight in the behavior of large massive primary
systems (P systems) with connected light
secondary systems (S systems). Some recent
research includes work by Sackman and Kelly (4],
Sackman et al. {5] , Der Kiureghian et al. [6}, and
Igusa and Der Kiureghian [7-9) who have
combined mode synthesis concepts, matrix
algebrate theory, and perturbation methods for
characterizing weakly-coupled structural
systems. A major limitation of these works are
that they are limited to lumped mass S systems.

In this paper, the general ideas in the Refs.
[4-9] are used to study continuous S systems and
the method to reduce the complexity, studied in
the works by Igusa, Achenbach, and Min {10,11],
is developed into the frequency window method.

2. Lagrange's Equations

Consider the system illustrated in Fig. 1
composed of one P system with domain £2and n S
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systems with domain £,k =1,...,n Each §
system is rigidly connected to the P system at a
single point, x; .

The P system without S systems can be

described by mode shapes ®;(x), natural
frequencies, @, and mass density p(x), where x is
the coordinate vector and the mode shapes are
normalized with respect to the mass density.
Similarly, each S system & with fixed boundary
at the support point x; can be described by

normalized mode shapes W (x),
frequencies, wy; , and mass density pi(x).

natural

For harmonic response, the free vibration
displacement fields are given by

Wi = Y i (x) e (N

for the P systom and

U (X,f) = lEka WY, () + o
J

+ode X (x=xg ) jeie (2)

for S system k, where g, and b are modal
coordinates and ¢; and d, represent the
magnitudes and directions of the support
translation and rotation, respectively. In the
following, the omnipresent harmonic term e-i@
will not be explicitly included in the equations.

The constraints are specified by the
displacements and rotations at the support
locations x;. Equating the displacements and
rotations of S system & with those of the P system
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yields
= r o | -
fk = lL dy J h z‘,al‘b«lx (3)

where @ are the displacements and rotations
corresponding to mode i of the P system at
attachment point x; given by

;‘k = @G ‘i
Vx (i) | @

Using a vector of Lagrange multipliers A4
for each S system k corresponding to the
constraints in Eq. (3), the Lagrange's equations of
motion are

(@ - o?)a; +21{&k =0 (5)
-
‘w,fl —aﬂ)bg - (szfﬁ;q =0 (6)

a)z{ﬁkfk +Zbkjﬁkj}+ A, =0 )

J

where ﬁkj and M, are mass vector and matrices,
respectively, which represent coupling between
modes of P and S systems.

3. Reformulation in terms of Mobilities
and Impedances

Reformulation of Eqs. (5)-(7) yields the
impedance Z, {(w) of S system & with translational
and angular velocities applied at its attachment
point and the mobility Ny (@) of the P system,
without S systems, for input force at support
location ! and response velocity at support
location k. The modal expressions are,
respectively,

Zi(w) = *iﬂ)’ﬂk + z _2Q12____;_ ﬁkj l/\'\lllt./ \

\ 1 wkj - '(8)
A Ay
Nu(w) = > —% ey
2‘.: ? - o 9
Recasting the results in matrix form yield
I + N(w)diag{Z, (w)
[ glZy 10)

e Za(a))if = 0

where N(w) is the mobility matrix of the P system
given by

N [ Niu(w) Nia(w)
(@ =] :
]. Na(w) Non (@) v
—iw AT
=y Y s
T wf - o

and f is the €n-vector of support displucemends
and rotations.

The generalization to damped systems is
mathematically performed by introducing the
concept of complex frequencies. itis assumed that
the free P system and the fixed-base S systems
are classically damped, i.e., their mode shapes
are real valued.

4. Frequency Window Method

The complexity of the dynamic analysis
problem can be measured by the polynomial
degree of the eigenvalue problem in Eq (10). It
can be seen that if there are P modes in the P
system and Q(k) modes in S system «, then the
complexity © of the problem is

©=2/F+Y 0k (12)
k

Frequency window method is to separate
dominant and non-dominant terms in the
characteristic equation and to make
approximations in the non-dominant expressions.

On examining the summations in Egs (8) and
(9), it can be seen that certain terms become
relatively large when the natural frequencies of
the systems are close to w, or equivalently, in a
neighborhood of wy . Sets of indices can be defined
which correspond to these system modes

Hay,d) = ‘alli such that lw,» ~ a{,|< 6} 13)
ap,0,k) = {allkjsuch that|a)k, - ab|< 8}

14
where it is understood that single indices i refer to
the P system and double indices &/ refer to S

system k. and § and ay are the size and central
value of window, respectively.

Using this classification of system modes
and approximating the non-dominant term by
substituting ay for @ yield '

Zi(@) =~ Ly (0. @y, 8) +Zpy(aw, 8)  (15)

N(w) = Ny (@, @, 8) + Ny (a, 8 (16)

where Zio(w, ay, 6 and Ny(w, ay, 8 are

dominant terms and Z;,; (ap, 8) and N, (ay, &) are
non-dominant terms.

Substituting Eqs (15) and (16) into the
characteristic equation (10) yields an eigenvalue
problem of lower order, and hence reduced
complexity. The complexity is determined by the
numbers of elements of the index sets. 1f an
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operator ©[- | is defined for counting the size of

sets, then the complexity of the eigenvalue
problem is

O = Oll(w,d] + 3, Olitw,8,k)]  (17)
k

which can be considerably smaller than the

complexity of the original problem given in Eq
(12).

5. One-Mode Windows

A tuning window of order § at ay is defined
by the index set

J(6,ap) = {all indeces i and &j such that
lw, -] < 8, |ax; —a] < )
The simplest windows are one-mode

windows, where J(d,ay) has only a single
element.

There are two possible types of one-mode
windows given by the following representations
of J(8, wy ):

ti)
5.1 Mode {kj}

and {&j})

For notational convenience, and without any
loss of generality, it is assumed that & = 1. Itis
natural to assign the central frequency to the 1j
frequency of 5 system one, ay = @,. The index
sets defined in Eqgs (13) and (14) are simply

Han,8) =}, Ha,5,1)=11j},and Key,8,0) = | )

for I+ 1. Substituting into Eqs (15) and (16) for the
mobilities and impedances and using the
simplified approximate results in Eq (10) yields
the following eigenvalue problem

[l + N(wy) diaglZio (@ @, §+Z1 (w, 6)

Z@) - Zoff =0 18
Since Zy (w ay, 6) is one order of magnitude
larger than all the remaining impedance terms,
the first-order reduction of the eigenvalue
problem in Eq (18) is

(1 + Neew)diaglZi (@, 8)

0--ollt=0
Considering only f,
problem leads to

19)

in the eigenvalue

1+ Noa) Zio @ay, 8 20
-i v

*;%Nn (ep)My; My |fy, = 0

wj, -

{lﬁ-

Although this problem is of order 6x6, the outer
product indicates that the second matrix term in
brackets is of rank one, implying that the

eigenvalue problem is actually of order 1x1. This
reduced eigenvalue problem can be extracted trom

Eq. (20) by pre-multiplying by WI{, and defining

@n
to yield the scalar equation

ol - & - i) {V\l’{',Nn ()M |mi

=0 (22)
The solution for the frequency is
@ = o VT (23)
where
Ty & <
7= iy My Ny ()M 24)

The constant ¢ is dimensionless and is a
physical measure of the effect of the flexibility
of the P system at the attachment location on the
natural frequency of the combined system. If p =
0, then the P system acts as a rigid support and
the natural frequency of the combined system is
identical to that of the fixed-end S system.
Positive real components tor y corresponds to a
tlexible support and results in a reduction of the
natural frequency. The term support flexibility
purameter is applied to n

The mode shape component can be
determined by substituting the result for the
natural frequency into the eigenvalue equation.
The result is

fy

iy Ny (ﬂb)ﬂu 25)

5.2 Mode {1}
It is natural to assign the central frequency
to the i-th frequency of the P system, an = &

Following the same procedure in mode {kj} yields
the first-order problem

1+ Ny (o, @y, S)diag{Z) (w)

: Zn(m)),]f =0

The reduced eigenvalue problem can be extracted
from Eq. (26) by pre-multiplying by

(26)

AT
icq;l @; diag{Z; (@) --- Z,(ap)}and defining

. AT
pi = Tmba?o" diag|Z, (an)

wh - 27




to yield the scalar equation

. ~T
o - @ - e @ diaglZ ()

(28)
Z,.(aa)))dh]p.-cq}:’ =0
The solution for the frequency is
@=ail-4 (29)
where

~T ~
The constant y; is dimensionless and is a

physical measure of the effect of the impedance
of all S systems on the natural frequency of the
combined system. If i; = 0, then the system acts
as massless, decoupled S systems and the natural
frequency of the combined system is identical to
that of the free P system. Positive real
components for y; correspond to a mass effect and
result in a reduction of the natural frequency. The

term S system mass parameter is applied to y;,

Following the same procedure in mode {kj}
yields the mode shape

~

f =< (31)

6. Example Studies

To illustrate the results of this paper, a
simple example is studied. The system, shown in
Fig. 2, consists of an Euler-Bernoulli beam with
free ends supporting two smaller cantilever beams
at one third span intervals. The cantilevers are
the S systems and can represent ribs on the P
system. The modulus of elasticity, £, is the same
for all beams, and the moments of inertia and
masses per unit length are denoted / and m for the
P system and /; and m; for the two S systems,

respectively. It is useful to define
nondimensional parameters
—m _El

A=t ad TA=3 (32)

where Ais a mass density ratio and 74 is a
rigidity ratio. For simplicity, vibrations
corresponding to axial deformations are not
considered and damping is neglected. The
parameter /i denotes the length of S system k
normalized by the length of the P system.

One set of system are considered,
corresponding to window {j}. Three mass density
ratios, A = 0.05, 0.15, and 0.5, are considered and
the parameter 1 is held constant at 0.25.

The natural frequencies and mode shapes

corresponding to the tuning window are obtained
using an exact and a frequency window analyses.
The exact results are determined by numerically
solving the original eigenvalue problem using a
sufficiently large number of system modes to
produce convergent values. The frequency window
method results are obtained by using the closed-.
form expressions derived in this paper. The
mode shape components f are scaled so that the
vector norm is|f| =1,

For the example study of window {j}, the
rib lengths are /| = 0.092 and 4 = 0.083, and the
modal properties of the combined system
corresponding to the first fixed-base mode of rib
one is examined, i.e., kj = 1,1. The approximate
frequencies, normalized with respect to ay = wy,
and the mode shape components f are computed
using Eqs. (23) and (25). The numerical results are
compared in Table 1 with exact results. The
frequencies are also plotted in Fig. 3 to illustrate
the effect of varying rib mass density.

The numerical results show several features
predicted by the frequency window method.
First, as the mass density of the ribs decreases,
the normalized frequency approaches unity, i.e.,
the natural frequency of the combined system
approaches that of the fixed-base rib. This can
be explained in terms of the parameter % defined
in Eq. (24). For decreasing mass density, % become
small relative to unity, and Eq. (23) shows that
the natural frequency of the combined system
approaches that of the fixed-base S system.
Second, the mode shape components f are nearly
independent of the S system mass densities.
Equation (25) confirm this observation, and also
indicate that the mode shape is proportional to
the vibration shape of the free-free beam

subjected to a reaction force of magnitude IVl,, at
the base of rib one.

7. Conclusion

Lagrange's equations were used to develop a

-characteristic equation for connected structural

systems in terms of S sysltem impedances and P
system mobilities. Next, methods of reducing the
problem complexity were developed by
decomposing the impedance and mobility
rational expressions into dominant and secondary
terms. The reduced problem was examined for the
simplest class of systems characterized by one
dominant mode. Closed-form expressions for the
modal properties were found to contain
parameters with direct physical interpretations.

The example studies show that the
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approximate results by the frequency window
method are accurate, particularly for small §
system masses. This is remarkable in view of the
fact that the example system has three
components, each with an infinite number of
modes, while the frequency window analysis uses
a single variable equation, appropriately chosen
to capture the dominant characteristics of the
system.
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Figure 3 Frequency ratio, w/a», vs. rib mass density ratio, 4,
for mode {kj} by both exact (D and frequency
window (A) method.

A=0.05 A=0.15 A=0.5

Exact Apprx. Exact Apprx, | Exact Apprx.

Freq.ratio | 0.998 0.998 0.995 0.994 0.982 0.979

Mode
x1 0.20 0.19 0.20 0.19 0.22 0.19
yi 0.28 0.24 0.26 024 0.20 0.24
ri 0.06 0.05 0.03 0.05 -0.03 0.0

x2 0.20 Q.19 0.20 0.19 0.22 0.19
y2 -0.65 -0.63 -0.63 -0.63 -0.60 -0.63
r2 -0.65 -0.68 -0.67 -0.68 -0.71 -0.68

Table 1 Exact and approximate frequency ratios and mode shape
components for mode (kj}
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