• 제목/요약/키워드: structural importance

검색결과 1,268건 처리시간 0.024초

Joint Structural Importance of two Components

  • Abouammoh, A.M.;Sarhan, Ammar
    • International Journal of Reliability and Applications
    • /
    • 제3권4호
    • /
    • pp.173-184
    • /
    • 2002
  • This paper introduces the joint structural importance of two components in a coherent system. Some relationships between joint structural importance and marginal structural importance are presented. It is shown that the sign of Joint structural importance can be determined, in advance, without computation in some special structures. The joint structural importance of two components in some series-parallel and parallel-series systems are established. Some practical examples are presented to elucidate some of the derived results.

  • PDF

Structural reliability estimation based on quasi ideal importance sampling simulation

  • Yonezawa, Masaaki;Okuda, Shoya;Kobayashi, Hiroaki
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.55-69
    • /
    • 2009
  • A quasi ideal importance sampling simulation method combined in the conditional expectation is proposed for the structural reliability estimation. The quasi ideal importance sampling joint probability density function (p.d.f.) is so composed on the basis of the ideal importance sampling concept as to be proportional to the conditional failure probability multiplied by the p.d.f. of the sampling variables. The respective marginal p.d.f.s of the ideal importance sampling joint p.d.f. are determined numerically by the simulations and partly by the piecewise integrations. The quasi ideal importance sampling simulations combined in the conditional expectation are executed to estimate the failure probabilities of structures with multiple failure surfaces and it is shown that the proposed method gives accurate estimations efficiently.

교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법 (Importance Sampling Technique for System Reliability Analysis of Bridge Structures)

  • 조효남;김인섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.34-42
    • /
    • 1991
  • This study is directed for the development of an efficient system-level Importance Sampling Technique for system reliability analysis of bridge structures Many methods have been proposed for structural reliability assessment purposes, such as the First-order Second-Moment Method, the Advanced Second-Moment Method, Computer Simulation, etc. The Importance Sampling Technique can be employed to obtain accurate estimates of the required probability with reasonable computation effort. Based on the observation and the results of application, it nay be concluded that Importance Sampling Method is a very effective tool for the system reliability analysis.

  • PDF

Component Importance for Continuum Structure Functions with Underlying Binary Structures

  • Lee, Seung-Min;Sim, Song-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제14권3호
    • /
    • pp.577-582
    • /
    • 2007
  • A continuum structure function (CSF) is a non-decreasing mapping from the unit hypercube to the unit interval. A B-type CSF, defined in the text, is a CSF whose behaviour is modeled by its underlying binary structures. As the measure of importance of a system component for a B-type CSF, the structural and reliability importance of a component at a system level ${\alpha}$(0 < ${\alpha}$ < 1) are defined and their properties are deduced.

최소절단집합과 최소경로집합을 이용한 구조 및 신뢰성 중요도 척도의 개발 및 적용 (Development and Implementation of Measures for Structural and Reliability Importance by Using Minimal Cut Sets and Minimal Path Sets)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제14권1호
    • /
    • pp.225-233
    • /
    • 2012
  • The research discusses interrelationship of structural and reliability importance measures which used in the probabilistic safety assessment. The most frequently used component importance measures, such as Birnbaum's Importance (BI), Risk Reduction (RR), Risk Reduction Worth (RRW), RA (Risk Achievement), Risk Achievement Worth (RAW), Fussel Vesely (FV) and Critically Importance (CI) can be derived from two structure importance measures that are developed based on the size and the number of Minimal Path Set (MPS) and Minimal Cut Set (MCS). In order to show an effectiveness of importance measures which is developed in this paper, the three representative functional structures, such as series-parallel, k out of n and bridge are used to compare with Birnbaum's Importance measure. In addition, the study presents the implementation examples of Total Productive Maintenance (TPM) metrics and alternating renewal process models with exponential distribution to calculate the availability and unavailability of component facility for improving system performances. System state structure functions in terms of component states can be converted into the system availability (unavailability) functions by substituting the component reliabilities (unavailabilities) for the component states. The applicable examples are presented in order to help the understanding of practitioners.

Low-discrepancy sampling for structural reliability sensitivity analysis

  • Cao, Zhenggang;Dai, Hongzhe;Wang, Wei
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.125-140
    • /
    • 2011
  • This study presents an innovative method to estimate the reliability sensitivity based on the low-discrepancy sampling which is a new technique for structural reliability analysis. Two advantages are contributed to the method: one is that, by developing a general importance sampling procedure for reliability sensitivity analysis, the partial derivative of the failure probability with respect to the distribution parameter can be directly obtained with typically insignificant additional computations on the basis of structural reliability analysis; and the other is that, by combining various low-discrepancy sequences with the above importance sampling procedure, the proposed method is far more efficient than that based on the classical Monte Carlo method in estimating reliability sensitivity, especially for problems of small failure probability or problems that require a large number of costly finite element analyses. Examples involving both numerical and structural problems illustrate the application and effectiveness of the method developed, which indicate that the proposed method can provide accurate and computationally efficient estimates of reliability sensitivity.

교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법 (Importance Sampling Technique for System Reliability Analysis of Bridge Structures)

  • 조효남;김인섭
    • 전산구조공학
    • /
    • 제4권2호
    • /
    • pp.119-129
    • /
    • 1991
  • 본 논문은 교량구조의 체계신뢰도를 추정하기 위한 효율적인 중요도 표본추출기법의 개발을 목적으로 한다. 기존의 체계신뢰성 해석을 위한 방법은 1차 모멘트법, 2차 모멘트법, AFOSM 근사해법, 그리고 시뮬레이션 방법등이 있다. 중요도 표본추출기법은 아주 적은 경비와 노력으로 정확한 해를 구하는 시뮬레이션 방법이다. 적용 예를 통하여 중요도 표본추출기법은 교량구조의 체계신뢰성해석에 아주 효과적인 방법임을 알 수 있었다.

  • PDF

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • 대한안전경영과학회지
    • /
    • 제2권4호
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

Adaptive kernel method for evaluating structural system reliability

  • Wang, G.S.;Ang, A.H.S.;Lee, J.C.
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.115-126
    • /
    • 1997
  • Importance sampling methods have been developed with the aim of reducing the computational costs inherent in Monte Carlo methods. This study proposes a new algorithm called the adaptive kernel method which combines and modifies some of the concepts from adaptive sampling and the simple kernel method to evaluate the structural reliability of time variant problems. The essence of the resulting algorithm is to select an appropriate starting point from which the importance sampling density can be generated efficiently. Numerical results show that the method is unbiased and substantially increases the efficiency over other methods.

구조방정식모형(SEM)을 활용한 버스 이용자의 통행시간 중요도-만족도 분석(IPA) (An Importance-Performance Analysis(IPA) for Bus Users Travel Time by Using Structural Equation Model(SEM))

  • 안우영;이솔
    • 대한토목학회논문집
    • /
    • 제35권3호
    • /
    • pp.663-670
    • /
    • 2015
  • 현재 수립된 대부분의 대중교통관련 계획에서는 투자우선순위를 결정함에 있어 중요도(importance) 분석 없이 시설물 조사와 설문 조사를 통해 시설물에 대한 설치율과 만족도(performance)가 낮은 항목을 우선적으로 고려하여 투자순위를 결정하고 있다. 본 연구에서는 구조방정식모형(SEM: Structural Equation Model)을 활용하여 버스 이용자의 통행시간에 대한 중요도와 만족도를 동시에 고려할 수 있는 중요도-만족도 분석(IPA: Importance-Performance Analysis) 기법을 제시하였다. 수도권과 비수도권을 대상으로 버스이용자에 대한 IPA 분석을 실시한 결과 수도권의 경우 우선적인 개선이 필요한 항목으로는 버스정차횟수, 교차로수, 배차간격, 승차대기시간 및 신호체계 순서로 분석되었고, 비수도권의 경우 수도권의 역순인 신호체계, 승차대기시간, 배차간격, 버스전용차로 및 교차로수 순서로 분석되었다.