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Component Importance for Continuum Structure
Functions with Underlying Binary Structures*

Seung Min Lee) and Songyong Sim?

Abstract

A continuum structure function (CSF) is a non-decreasing mapping from
the unit hypercube to the unit interval. A B-type CSF, defined in the text,
is a CSF whose behaviour is modeled by its underlying binary structures.
As the measure of importance of a system component for a B-type CSF,
the structural and reliability importance of a component at a system level
a(0 < a < 1) are defined and their properties are deduced.
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1. Introduction

A structure function in reliability theory models the operation of a complex sys-
tem by relating the states * = (z1,22,...,z,) of the components C = {1,2,...,n} of
a system to that of the system itself. The classic theory of structure functions, as in-
troduced by Birnbaum et al. (1961), assumes that each component can be in one of
only two states, operating or failed and similarly that the system whose status is de-
termined solely by the statuses of these components can itself be in only one of these
two states. Consequently, the structure function is a binary function of binary variables.
A coherent binary structure function (BSF) is a mapping ¢ : {0,1}" — {0,1} which is
non-decreasing in each argument and for which no component is irrelevant. In many
applications, however, the system and its components are capable of assuming a range of
levels of performance, varying from perfect functioning to complete failure, and in these
situations the dichotomous model is an oversimplification. In order to describe more ad-
equately the performance of such systems and components, set-theoretic and axiomatic
approaches have been adopted by a number of authors to introduce a variety of classes of
multistate structures which permit the states of the components and the system itself to
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take an arbitrary finite number of values. Extending the domain and range from {0, 1}
to {0,1,..., M}, Barlow and Wu (1978) propose a class of multistate structure functions
having a one-to-one correspondence between the BSF and the multistate structure func-
tion (MSF), and Natvig (1982) suggests a natural generalization of this class of MSF
by permitting the underlying BSF ¢ to vary. A continuum structure function (CSF),
introduced by Baxter (1984}, is a mapping v : A — [0,1] which is non-decreasing in
each argument and which satisfies v(0) = 0 and (1) = 1, where A denotes the unit
hypercube [0,1]™ and « denotes (o, a,...,a) € A. In the spirit of Natvig’s suggestion,
the following class of CSFs is proposed.

Definition 1.1 (Baxter, 1986). A CSF v is said to be a Natvig CSF if there exists
a class of coherent BSF {¢,,0 < o < 1} such that

Y(@) > aiff pa(Ia(x)) =1 (x€A,0<a<]),

where Io(x) = (lo(z1),...,1a(zn)) and In(z;) is the indicator of {x; > a}, i =
1,2,...,n.

Let v be a Natvig CSF. The class of underlying BSFs {¢4,0 < o < 1} is finite, since
there are only finitely many BSFs of n components. Further, {¢a,0 < @ < 1} cannot
be chosen arbitrarily. For v to be a CSF, ¢, is to be left-continuous in « for fixed x
and ¢5(y) > ¢da(y) (B < @,y € {0,1}"). For various suggestions and the axiomatic
characterizations of such classes, see Baxter and Lee (1989a), Borges and Rodrigues
(1983), Griffith (1997), Kim and Baxter (1987), and Lee (2003).

In this paper, we consider a new class of CSFs, called B-type CSFs, which includes
the class of Natvig CSFs. For a B-type CSF, a relevant component at a certain state is
allowed to become irrelevant at some other states of the system or vice versa. In section
2, the formal definition of B-type CSFs is presented and some properties of such CSFs are
deduced. In Section 3, we present the definitions of component importance and derive
their properties. An example is also discussed for illustrative purpose.

2. The Class of B-type Continuum Structures
Definition 2.1 Let {(¢a,Cq)} be a collection of pairs such that

(i) ¢a:{0,1}% — {0,1} is a coherent BSF, the components of which are the elements
of C, for each a € (0, 1],
(if) UpCq = C,
(iii) For each € A, ¢a(I5(x)) > ¢a(I5" (x)) whenever & < § (0 < o, § < 1).
The function vy : A — [0,1] is said to be a B-type CSF if it satisfies the condition

Y(z) > o iff po(IS*(x)) =1 (0<a <1)forall z € A.
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Proposition 2.1 A B-type CSF is continuous.

Proof: Note that I,(x) = I,(ad,(x)) and IS>(x) = IS (0°~CzC>) for all x €
A and a(0 < @ < 1). Now, for a B-type CSF 7,

V) > @ = oI5 (@) =1
= oI5 (097, 2%)
= a(I5(ala(0°7%,
= y(al (0% z%)) >«

= v(alu(z)) > a since & > (09~ C=, £%) and ~ is non-decreasing.

Hence, by Theorem 2 of Lee (2003), +y is continuous, completing the proof.

Proposition 2.2 Let v be a B-type CSF. Then, i € C, if and only if there exists a
state vector x such that y(a,,x) > a whereas y((a — €);,x) < « for every € > 0.

Proof: (‘If’) Choose 7 € C and suppose that & be a vector such that v(a;,x) >
o whereas y((a — €);,2) < a for every € > 0. Then, since y(o;,z) > «, we have
¢a(I5*(1;,2)) = 1. Further, If i & C,, then ¢o(IC=(0;,)) = ¢ (IS (1s,x)) so that
v(0;, ) > @, contradicting the assumption, and hence i € C, as required.

(‘Only if’) Choose i € C,. Since ¢, is coherent, there exists a binary vector y such
that ¢a(1:, yC= 1) (= 1) > ¢4(0;, y©«~ 1) (= 0), which in turn implies that v(a;, ay) >
a > y((a — €);,ay) for every € > 0, as claimed. O

In a structure function, a component is considered to be relevant to the system if
changing the state of the component somehow changes the system state. Thus, C,, is the
set of component which are relevant to v at level a. We note that a component which
is relevant to the system at level a needs not be relevant at different levels. A CSF ~ is
said to be weakly coherent (Baxter, 1986), if inf;cc suppea{y(1i, ) —7(0;, )} > 0, i.e.,
every component is relevant to the system.

Proposition 2.3 A B-type CSF is weakly coherent.

Proof: Suppose that v is a B-type CSF. Choose ¢ € C. Then, since U,C, = C,
there exists an o > 0 such that ¢ € C,. By Proposition 2.2, there exists a vector & such
that y(a;, ) > o whereas y((a — €);,z) < a for every € > 0 . Then, v(0;,2) < a <
¥(1;, ) so that sup e {v(1:, ) —¥(0;,2)} > 0. Since i is arbitrary, -y is weakly coherent
as claimed. O
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3. Component Importance on B-type CSFs
For a BSF ¢, Birnbaum (1969) defines the reliability importance of component i as
I°(6) = P{¢(L;,Y) - (0, Y) = 1},

where Y is a binary random state vector of components. Various authors have proposed
extensions of this concept to the multistate case (e.g. Barlow and Wu, 1978; Griffith,
1980; Natvig, 1982; Block and Savits, 1982) and on continua (e.g. Kim and Baxter,
1987; Baxter and Lee, 1989b). With a B-type CSF, we may regard part of the unit
interval, say [0,a) (0 < & < 1), as corresponding to the failure states of the system and
the components and to regard [a, 1] as the operating states. When this binary approach
is applied, a natural generalization of I?(i) would be as follows.

Definition 3.1 The reliability importance R;(c) of component i at level a € (0, 1]
for the B-type CSF ~y is defined as

Ri(@) = P{¢a(I$ (1, X)) > ¢a(I5*(0;, X))},
where X 1s a random state vector.

We note that R;(c) depends on level a. When P is replaced with u, the Lebesgue
measure on R", R;(a) can be interpreted as the structural importance which is the
relative proportion of state vectors at which component i is relevant to the system at
level a. It can be easily seen that u{z € A|¢.(IS*(1;,x)) > ¢o(I$>(0;,2))} = 0 if and
only if ¢ is not relevant to the system at level o and, hence, that the following Proposition
holds.

Proposition 3.1 Let v be a B-type CSF and let X, Xo,..., X, are independent,
absolutely continuous random variables. Then, for all a € (0,1] and eachi € C, Ri(a) >
0 if and only if i € C,.

It is of interest to determine when one component is uniformly more important than
another, i.e., when R;(a)) > R;(a) for all a.

Definition 3.2 Let v be a B-type CSF. We say that component i is connected in
series (parallel) to the remainder of the components, if, for all a € (0,1],7(x) > a only

It is easily seen that if the random variable X has support [0,1], then 0 < P(X >
a) < 1for all @ € (0,1). Let v be a B-type CSF and suppose that X1, Xs,..., X»
are independent, absolutely continuous random variables, each with support the unit
interval. Then, we may write

Ri(a) = Px(Ua N Dia)/ Px(Dia) — Px(Ua N D§,)/ Px(D5,),
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where U, = {x € Aly(x) > a} and D;, = {& € A|z; > o}. Kim and Baxter (1987)
suggest a component importance measure for general CSFs as conditional probability
with the key vector 8, which is the intersection of the boundary of U, and the diagonal
of A. When restricted to B-type CSFs, their importance measure coincides with R;{c)
expressed as above under the same condition. Noticing d, = « for all & € (0,1) in a
B-type CSF, the proof of the following Proposition is similar to those of Theorem 4.1
and Theorem 4.2 in Baxter and Lee (1989b), and hence omitted.

Proposition 3.2 Let v be a B-type CSF and suppose that X1, Xs, ..., X, are in-
dependent, absolutely continuous random variables. Each with support the unit interval.
If component i is connected in series (parallel) to the remainder of components and if
X; <t (>%) X, then Ri(a) > Rj(a) for alla € (0,1), j #i.

Proof: Omitted. (W
In case of binary structures we have the following corollary.

Corollary 3.1 Let ¢ be a BSF and suppose that Y1,Ys,...,Y, are independent
binary random wvariables such that P{Y; = 1} > 0 for all i € C. If component i is
connected in series (parallel) to the remainder of components and if Y <t (>5)Y}, then
I19G) > I°(j).

A stronger result may be obtained for modules of a B-type CSF, as we now show.

Definition 3.3 A pair (4, x) is said to be a module of a B-type CSF =, if (A,x) is
a module of (Co, ¢s) for every a € (0,1].

Proposition 3.3 For a B-type CSF #, let (A,x) be a module of v and suppose
that X3, Xo, ..., X, are independent, absolutely continuous random variables, each with
support the unit interval. If component i is connected in series (parallel) to the remainder
of components in the module, and if X; <** (>%*)X;, then Ri(o) > Rj(c) for all a €
(0,1) and all j € A,j # i.

Proof: Choose o € (0,1) and component j € A, j # i. Suppose that ¢, is the
underlying BSF of « at level a. We see that, by Birnbaum (1969), I%= (i) = IX(5)I%(x)
where IX(j) is the reliability importance of component i in the structure x and I (x)
is the reliability importance of the module regarded as a component in the structure ¢,
Define the binary random variable Y; = Iix,>q}, and observe that if X; <** (>°)X;
then Y; <t (>%')Y;. Then, it is easily seen that R;(a) = I®=(j) and hence R;(a) =
IX(j)I%=(x). Further, since I?=(x) > 0, it suffices to show that IX(i) > I*(j). Now,
since component : is connected in series (parallel) to the remainder of components in the
module and since Y; <** (>%*)Y;, we have IX(i) > IX(j) by Corollary 3.1. Since a and
J € A are arbitrary, the result follows. |
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Example 3.1 Let ¢: {0,1}° — {0,1} be a coherent BSF defined by
() = (71 V x2) Az A[zg V (T5 A 26)]

and let v be a B-type CSF such that ¢o = ¢ for all « € (0,1]. If X1 >% X5 > X3,
then R3(a) > Ri(a) > Ry(a) for all a € (0,1). If X4 >t Xg >t X5 >°t X3, then
R3(a) 2 Ry(a) > Rs(a) > Rs(a) for all a € (0,1].
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