• Title/Summary/Keyword: structural fiber

Search Result 2,148, Processing Time 0.028 seconds

An Experimental Study on the Improvement of Structural Performance of Steel Fiber Reinforced Concrete Beam Using Early Age Concrete (강섬유보강 초기재령 철근콘크리트 보의 구조성능 개선에 관한 실험적 연구)

  • 하기수;신종학;권칠성;주정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.361-366
    • /
    • 1999
  • The purpose of this study is to evaluate the structural performance of Reinforced steel fiber concrete structures using early age concrete. Reinforced concrete structures using early age concrete are result in the degradation of structural performance due to crack, overload, unexpected vibration and impact load. Specimens, designed by the over 0.75% of steel fiber incorporated, were showed the ductile behavior and failed slowly with flexure and flexure-shear. Increasing the percent of steel fiber incorporated(0.25~2.0%), the ultimate shear stress of each specimen were increased 12~40% than that of specimen SSS.

  • PDF

Distributed optical fiber sensors for integrated monitoring of railway infrastructures

  • Minardo, Aldo;Coscetta, Agnese;Porcaro, Giuseppe;Giannetta, Daniele;Bernini, Romeo;Zeni, Luigi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • We describe the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured statically and dynamically along 60 meters of rail track, as well as along a 3-m stone arch bridge. We show that, gluing an optical fiber along the rail track, traffic monitoring can be performed in order to identify the train passage over the instrumented sector and determine its running conditions. Furthermore, dynamic and static strain measurements on a rail bridge are reported, aimed to detect potential structural defects. The results indicate that distributed sensing technology represents a valuable tool in railway traffic and safety monitoring.

A Study on the Maximum Load of R/C Beams Strengthened by Carbon Fiber Sheets (탄소섬유시트로 보강된 R/C 보의 최대내력에 관한 연구)

  • Choi, Chang-Sik;Kim, Yong-Chae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.199-204
    • /
    • 2001
  • Recently, strengthening of structural members by adhesion of steel plate or fiber sheets is generally used. Particularly, the Carbon Fiber Sheets (CFS) is widely used. Rut, the strengthening effect of the CFS is not clearly define yet. Therefore, this paper is designed to evaluate the effectiveness of CFS methods by analyzing previous studies in statistics. According to the results, the maximum load carrying capacity is increased up to 0.16 times when the reinforced concrete beams were strengthened by CFS which is standard specimens. The number of sheets made some effect on the strength while, the other parameters influenced the ductile capacity.

  • PDF

Flexural Strengthening Effect on R.C Beam with Structural Damage (구조적 손상을 입은 R.C보의 휨보강 효과)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • The Rehabilitation and repair of structurally deteriorated, reinforced concrete structures will be highly demanded in the near future. The purpose of this study is to investigate whether damaged beams that crack and deflection are developed by bending moment are restored to the former state. In conclusion, when specimens strengthened with Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid(Carbon Fiber Reinforced Plastic-Grid) are compared with standard specimen, flexural capacity is increased and ductility and energy absorbtion capacity are similar with undamaged specimen. Therefore Steel Plate, CFS(Carbon Fiber Sheet) and CFRP-Grid (Carbon Fiber Reinforced Plastic-Grid) have highly efficiency as material of flexural strengthening.

Nonlinear responses of energy storage pile foundations with fiber reinforced concrete

  • Tulebekova, Saule;Zhang, Dichuan;Lee, Deuckhang;Kim, Jong R.;Barissov, Temirlan;Tsoy, Viktoriya
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • A renewable energy storage pile foundation system is being developed through a multi-disciplinary research project. This system intends to use reinforced concrete pile foundations configured with hollowed sections to store renewable energy generated from solar panels attached to building structures in the form of compressed air. However previous research indicates that the compressed air will generate considerable high circumferential tensile stresses in the concrete pile, which requires unrealistic high hoop reinforcement ratio to avoid leakage of the compressed air. One possible solution is to utilize fiber reinforced concrete instead of placing the hoop reinforcement to resist the tensile stress. This paper investigates nonlinear structural responses and post-cracking behavior of the fiber reinforced concrete pile subjected to high air pressure through nonlinear finite element simulations. Concrete damage plasticity models were used in the simulation. Several parameters were considered in the study including concrete grade, fiber content, and thickness of the pile section. The air pressures which the pile can resist at different crack depths along the pile section were identified. Design recommendations were provided for the energy storage pile foundation using the fiber reinforced concrete.

An Experimental Study on the Rupture Strain Estimation of Fiber Sheets Bonded to Reinforced Concrete Beams (R.C.보에 부착된 섬유시트의 파단변형률 평가에 관한 실험적 연구)

  • Kim, Seong-Do;Hwang, Tea-Ill
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.157-165
    • /
    • 2003
  • The paper deals with the rupture strain estimation of fiber sheets. The experimental study involved tensile testing of 120 fiber sheet specimens and bending testing of 72 concrete beams strengthened with various types of fiber sheets(carbon, glass, and aramid fiber). Concrete beams have 3 types of reinforcement ratios. Rupture strains of fiber sheet specimens are determined by tensile tests to be a little less than the tensile failure strain by the catalog, independently on the number of fiber sheet layers. It is shown that the rupture strain of fiber sheet bonded to reinforced concrete beam is not constant, but decreases as the fiber sheet layer increases. Based on these results, the rupture fiber sheet strain is estimated.

Performance of concrete structures with a combination of normal SCC and fiber SCC

  • Farhang, Kianoosh;Fathi, Hamoon
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.655-661
    • /
    • 2017
  • Fiber reinforced concretes exhibit higher tensile strength depending on the percent and type of the fiber used. These concretes are used to reduce cracks and improve concrete behavior. The use of these fibers increases the production costs and reduces the compressive strength to a certain extent. Therefore, the use of fiber reinforced concrete in regions where higher tensile strength is required can cut costs and improve the overall structural strength. The behavior of fiber reinforced concrete and normal concrete adjacent to each other was investigated in the present study. The concrete used was self-compacting and did not require vibration. The samples had 0, 1, 2 and 4 wt% polypropylene fibers. 15 cm sample cubes were subjected to uniaxial loads to investigate their compressive strength. Fiber Self-Compacting Concrete was poured in the mold up to 0, 30, 50, 70 and 100 percent of the mold height, and then Self-Compacting Concrete without fiber was added to the empty section of that mold. In order to investigate concrete behavior under bending moment, concrete beam samples with similar conditions were prepared and subjected to the three-point bending flexural test. The results revealed that normal Self-Compacting Concrete and Fiber Self-Compacting Concrete may be used in adjacent to each other in structures and structural members. Moreover, no separation was observed at the interface of Fiber Self-Compacting Concrete and Self-Compacting Concrete, either in the cubic samples under compression or in the concrete beams under bending moment.

The Suitability Assessment of Performance Standards on Landscaping Rocks of GRS(Glass Fiber Reinforced Slag) Panels (유리섬유강화슬래그(Glass-fiber Reinforced Slag)의 경관석 성능 적합성 평가)

  • Yoon, Bok-Mo;Lee, Yong-Bok;Koo, Bonhak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.2
    • /
    • pp.127-135
    • /
    • 2013
  • This study was carried out to verify the suitability of GRS(Glass-fiber Reinforced Slag) as natural type landscape stone according to the material property and structural safety performance standards. The structural safety performance of the GRS panel showed 12.4MPa and 16.2MPa each in flexural strength at 2 and 3% content of glass fiber while the flexural strength at 4 and 5% of glass fiber content showed 26.9MPa, and 30.2MPa, respectively, all satisfying the standards. In addition, air-dried gravity was found to be 1.82~1.89 in measuring range at 2~5% level of glass fiber content, satisfy the existing standards 1.8~2.3. In structural safety performance, the range of flexural strength consequent on glass fiber content was surveyed to be 12.8~30.2MPa, all satisfying the performance standards, while 10MPa and more while the compressive strength range was found to be 41.5~53.3MPa, all satisfying the performance standards, 40~60MPa. This study judged the suitability of only the items for a property of matter of landscape stone GRS by applying the natural-form landscape stone GFRC material standard, but in case an installation constructed with GRS material comes into existence later, there should be comprehensive performance guidelines through the research on durability, landscape performance and environmental and ecological performance.

Ductility of concrete slabs reinforced with low-ductility welded wire fabric and steel fibers

  • Tuladhar, Rabin;Lancini, Benjamin J.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.449-461
    • /
    • 2014
  • The use of low-ductility welded wire fabric (WWF) as a main tensile reinforcement in concrete slabs compromises the ductility of concrete structures. Lower ductility in concrete structures can lead to brittle and catastrophic failure of the structures. This paper presents the experimental study carried out on eight simply supported one-way slabs to study the structural behavior of concrete slabs reinforced with low-ductility WWF and steel fibers. The different types of steel fibers used were crimped fiber, hooked-end fiber and twincone fiber. The experimental results show that the ductility behavior of the slab specimens with low-ductility reinforcement was significantly improved with the inclusion of $40kg/m^3$ of twincone fiber. Distribution of cracks was prominent in the slabs with twincone fiber, which also indicates the better distribution of internal forces in these slabs. However, the slab reinforced only with low-ductility reinforcement failed catastrophically with a single minor crack and without appreciable deflection.

The Overall Investigation of Steel Fiber Strengthening Factor in Shear (전단에 대한 강섬유 보강계수의 종합적 고찰)

  • Lee, Hyun-Ho;Kwon, Yeong-Ho;Lee, Hwa-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.251-254
    • /
    • 2005
  • This study will have to define the shear strengthening effects of steel fiber in beam and column levels, as well as to suggest estimation method of maximum shear capacity of structural members. From review of literature surveys and perform structural member test results, following conclusion can be made; In beam level, steel fiber strengthening factor is suggested from the tensile splitting test results and beam test results. After suggesting shear capacity of beam without stirrups and beam with stirrups by proposed steel fiber strengthening factor, proposed equation is possible to evaluate the shear capacity of beam. In column level, with column test results and proposed steel fiber strengthening factor, shear capacity equation of steel fiber reinforced concrete in column is suggested.

  • PDF