• Title/Summary/Keyword: structural feasibility

Search Result 702, Processing Time 0.025 seconds

Dynamic Parameter Estimation of a CANDU Type Containment Using Ambient Vibration Measurements (상시진동을 이용한 CANDU형 격납건물의 동적파라미터 산정)

  • Choi, Sanghyun;Park, Sooyong;Hyun, Chang-Hun;Kim, Moon-Soo
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.188-196
    • /
    • 2012
  • Dynamic parameters such as natural frequencies can provide global stiffness information of a structure, and thus be utilized in monitoring structural integrity of large structures such as a containment. To identify the dynamic parameters without interrupting normal operation, a modal analysis method based on ambient vibration measurements should be applied. In this study, dynamic parameters of the containment of Wolsong Unit 2 are identified using ambient vibration measurement data. The feasibility of the study is verified using a numerical model for the containment. From the modal analysis, dynamic parameters of the containment with acceptable correlation to analytical modes can be estimated.

Feasibility Study of Seismic Probabilistic Risk Assessment for Multi-unit NPP with Seismic Failure Correlation (다수기의 확률론적 지진안전성 평가를 위한 지진손상 상관계수의 적용)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.319-325
    • /
    • 2021
  • The 2011 East Japan Earthquake caused accidents at a number of nuclear power plants in Fukushima, highlighting the need for a study on the seismic safety of multiple NPP (Nuclear Power Plant) units. In the case of nuclear power plants built on a site that shows a similar seismic response, there is at least a correlation between the seismic damage of structures, systems, and components (SSCs) of nuclear power plants. In this study, a probabilistic seismic safety assessment was performed for the loss of essential power events of twin units. To derive an appropriate seismic damage correlation coefficient, a probabilistic seismic response analysis was performed. Using the external event mensuration system program, we analyzed the seismic fragility and seismic risk by composing a failure tree of multiple loss of essential power events. Additionally, a comparative analysis was performed considering the seismic damage correlation between SSCs as completely independent and completely dependent.

Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach

  • Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.355-369
    • /
    • 2021
  • Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.

Gaussian mixture model for automated tracking of modal parameters of long-span bridge

  • Mao, Jian-Xiao;Wang, Hao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Determination of the most meaningful structural modes and gaining insight into how these modes evolve are important issues for long-term structural health monitoring of the long-span bridges. To address this issue, modal parameters identified throughout the life of the bridge need to be compared and linked with each other, which is the process of mode tracking. The modal frequencies for a long-span bridge are typically closely-spaced, sensitive to the environment (e.g., temperature, wind, traffic, etc.), which makes the automated tracking of modal parameters a difficult process, often requiring human intervention. Machine learning methods are well-suited for uncovering complex underlying relationships between processes and thus have the potential to realize accurate and automated modal tracking. In this study, Gaussian mixture model (GMM), a popular unsupervised machine learning method, is employed to automatically determine and update baseline modal properties from the identified unlabeled modal parameters. On this foundation, a new mode tracking method is proposed for automated mode tracking for long-span bridges. Firstly, a numerical example for a three-degree-of-freedom system is employed to validate the feasibility of using GMM to automatically determine the baseline modal properties. Subsequently, the field monitoring data of a long-span bridge are utilized to illustrate the practical usage of GMM for automated determination of the baseline list. Finally, the continuously monitoring bridge acceleration data during strong typhoon events are employed to validate the reliability of proposed method in tracking the changing modal parameters. Results show that the proposed method can automatically track the modal parameters in disastrous scenarios and provide valuable references for condition assessment of the bridge structure.

A Study on the Charpy Impact Performance of Structural Steel Considering the Leakage of Cryogenic Liquefied Gas (극저온 액화가스 누출에 의한 선체 구조용 강재의 샤르피 충격성능에 관한 연구)

  • Dong Hyuk Kang;Jeong-Hyeon Kim;Seul-Kee Kim;Tae-Wook Kim;Doo-Hwan Park;Ki-Beom Park;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.333-340
    • /
    • 2023
  • Environmental regulations are being strengthened worldwide to solve global warming. For this reason, interest in eco-friendly gas fuels such as LNG and hydrogen is continuously increasing. However, when adopting eco-friendly gas fuel, liquefying at a cryogenic temperature is essential to ensure economic feasibility in storage and transportation. Although austenitic stainless steel is typically applied to store cryogenic liquefied gas, structural steel can experience sudden heat shrinkage in the case of leakage in the loading and unloading process of LNG. In severe cases, the phase of the steel may change, so care is required. This study conducted Charpy impact tests on steel material in nine different temperature ranges, from room to cryogenic temperatures, to analyze the effects of cryogenic liquefied gas leaks. As a result of the study, it was not easy to find variations in ductile to brittle transition temperature (DBTT) due to the leakage of cryogenic liquefied gas. Still, the overall impact toughness tended to decrease, and these results were verified through fracture surface analysis. In summary, brittle fracture of the steel plate may occur when a secondary load is applied to steel for hull structural use exposed to a cryogenic environment of -40 ℃ or lower. Therefore, it needs to be considered in the ship design and operating conditions.

Design comparison of Fixed Offshore Structures Designed by WSD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 고정식 해양구조물 설계결과 비교 )

  • Bae-Keun Jeong;Doo-Yong Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.42-49
    • /
    • 2023
  • When designing fixed jacket structures, overseas design standards are applied due to the absence of domestic design methods. Although the US API standards are mainly applied, API RP 2A suggests two design methods: the allowable stress design method (WSD) and the load resistance coefficient method (LRFD), and is applied according to the designer's judgment. In this study, the stress ratio of the two design methods was reviewed and compared using SACS, an analysis program dedicated to marine structures, for fixed marine structures actually installed on the domestic coast. As a result of the review, it was found that the LRFD design method showed a greater stress ratio for extreme load analysis and transportation analysis, and the WSD design method showed a greater stress ratio for loading and lifting. Therefore, when applying the design method, it is considered appropriate to select the final design method considering safety and economic feasibility after conducting an applicability review for the two design methods.

Design of Robust $H_\infty$ Control for Interconnected Systems: A Homotopy Method

  • Chen Ning;Ikeda Masao;Gui Weihua
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • This paper considers a robust decentralized $H_\infty$ control problem for uncertain large-scale interconnected systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in subsystems. A design method based on the bounded real lemma is developed for a dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea of homotopy, where some of the variables are fixed alternately on each iteration to reduce the NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is computed first by imposing structural constraints on the coefficient matrices gradually. Then, the decentralized controller is modified again gradually to cope with the uncertainties. A given example shows the efficiency of this method.

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

A study on the economic analysis of high-rise residential-commercial building that is made by precast concrete (초고층 주상복합 프리캐스트 콘크리트 구조물의 경제성 분석에 관한 연구)

  • Kim, Bum-Ki;Suk, Sung-Joon;Lee, Ung-Kyun;An, Sung-Hoon;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.89-96
    • /
    • 2005
  • The increase of hish-rise residential-commercial buildings is required to cut down a term of works and the cost of construction. Reinforced concrete structures and steel framed reinforcement concrete that are commonly used have the difficulty in reducing them. Therefore, the purpose of this study is to propose a new precast concrete complex system and to analyze its economical feasibility. The economic analysis is performed through comparing the cost of a high-rise reinforced building that was already constructed with that of the new proposed precast concrete system, which is limited to structural frame work of typical floors. This study shows that the proposed precast concrete complex system is economical. Further research should be directed at including the influence of a term of works.

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device

  • Ippen, Christian;Greco, Tonino;Wedel, Armin
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.