• Title/Summary/Keyword: strong positive linear operator

Search Result 3, Processing Time 0.019 seconds

STRONG CONVERGENCE OF GENERAL ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1031-1047
    • /
    • 2017
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and other explicit algorithm) for nonexpansive mappings in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Strong convergence theorems for the sequences generated by the proposed algorithms are established.

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.

A GENERAL ITERATIVE ALGORITHM FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN A HILBERT SPACE

  • Thianwan, Sornsak
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.13-30
    • /
    • 2010
  • Let C be a nonempty closed convex subset of a real Hilbert space H. Consider the following iterative algorithm given by $x_0\;{\in}\;C$ arbitrarily chosen, $x_{n+1}\;=\;{\alpha}_n{\gamma}f(W_nx_n)+{\beta}_nx_n+((1-{\beta}_n)I-{\alpha}_nA)W_nP_C(I-s_nB)x_n$, ${\forall}_n\;{\geq}\;0$, where $\gamma$ > 0, B : C $\rightarrow$ H is a $\beta$-inverse-strongly monotone mapping, f is a contraction of H into itself with a coefficient $\alpha$ (0 < $\alpha$ < 1), $P_C$ is a projection of H onto C, A is a strongly positive linear bounded operator on H and $W_n$ is the W-mapping generated by a finite family of nonexpansive mappings $T_1$, $T_2$, ${\ldots}$, $T_N$ and {$\lambda_{n,1}$}, {$\lambda_{n,2}$}, ${\ldots}$, {$\lambda_{n,N}$}. Nonexpansivity of each $T_i$ ensures the nonexpansivity of $W_n$. We prove that the sequence {$x_n$} generated by the above iterative algorithm converges strongly to a common fixed point $q\;{\in}\;F$ := $\bigcap^N_{i=1}F(T_i)\;\bigcap\;VI(C,\;B)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)q,\;p\;-\;q{\rangle}\;{\leq}\;0$ for all $p\;{\in}\;F$. Using this result, we consider the problem of finding a common fixed point of a finite family of nonexpansive mappings and a strictly pseudocontractive mapping and the problem of finding a common element of the set of common fixed points of a finite family of nonexpansive mappings and the set of zeros of an inverse-strongly monotone mapping. The results obtained in this paper extend and improve the several recent results in this area.