• Title/Summary/Keyword: stretchable substrate

Search Result 41, Processing Time 0.026 seconds

Metallized Electrospun Nanofiber webs with Bulckled Configuration for Highly Transparent and Stretchable Conductors

  • Jin, Yusung;Hwang, Sunju;Jeong, Soo-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.363.1-363.1
    • /
    • 2016
  • Transparent and stretchable conductors are expected to be an essential component in future stretchable optoelectronic devices. Until now, two main methods have been commonly employed to fabricate transparent and stretchable conductors by using metal nanomaterials: creating buckling configurations and creating network configurations. In this report, a novel strategy for obtaining transparent and stretchable conductors is presented, one that employs these two main approaches simultaneously. To the best of our knowledge, this proposed configuration of a buckled long nanofiber network in this study has not yet been reported. In order to provide the transparent conductors with dual mode stretchability originating from simultaneous buckled and network configurations, a buckled Au@polyvinylpyrrolidone (PVP) nanofiber network (hereafter referred to BANN for convenience) was fabricated by transferring Au-metallized electrospun PVP nanofibers onto a prestrained polydimethylsiloxane (PDMS) substrate. Our BANN shows considerably lower strain sensitivity of resistance than that of straight Au@PVP nanofiber network. Durability tests conducted by performing cyclic tensile strain reveal that the relative change in resistance of BANN (prestrain = 20%) is quite small after 1000 cycles. We also demonstrate that this BANN exhibits superior performance over widely used indium tin oxide conductors with regard to high optical transmittance and low sheet resistance.

  • PDF

Fabrication of Stretchable Ag Nanowire Electrode and its Electrochromic Application (신축성있는 Ag 나노와이어 전극의 제조 및 전기변색 응용)

  • Lee, Jin-Young;Han, Song-Yi;Nah, Yoon-Chae;Park, Jongwoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • We report on stretchable electrochromic films of poly(3-hexylthiophene) (P3HT) fabricated on silver nanowire (AgNW) electrodes. AgNWs electrodes are prepared on polydimethylsiloxane (PDMS) substrates using a spray coater for stretchable electrochromic applications. On top of the AgNW electrode, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is introduced to ensure a stable resistance over the electrode under broad strain range by effectively suppressing the protrusion of AgNWs from PDMS. This bilayer electrode exhibits a high performance as a stretchable substrate in terms of sheet resistance increment by a factor of 1.6, tensile strain change to 40 %, and stretching cycles to 100 cycles. Furthermore, P3HT film spin-coated on the bilayer electrode shows a stable electrochromic coloration within an applied voltage, with a color contrast of 28.6 %, response time of 4-5 sec, and a coloration efficiency of $91.0cm^2/C$. These findings indicate that AgNWs/PEDOT:PSS bilayer on PDMS substrate electrode is highly suitable for transparent and stretchable electrochromic devices.

Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages (신축성 전자패키지용 강성도 국부변환 신축기판의 계면접착력 향상공정)

  • Park, Donghyeun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.111-118
    • /
    • 2018
  • In order to develop a local stiffness-variant stretchable substrate with the soft PDMS/hard PDMS/FPCB configuration consisting of two stiffness-different polydimethylsiloxane (PDMS) parts and flexible printed circuit board, a FPCB was bonded to PDMS using the acrylic-silicone double-sided tape and the interfacial adhesion of the PDMS/FPCB was evaluated. The pull strength of the FPCB, which was bonded to the fully cured PDMS using the silicone adhesive of the double-sided tape, was 259 kPa and the delamination during the pull test occurred at the interface between the PDMS and the silicone adhesive. On the contrary, the bonding process, for which the FPCB was bonded using the silicone adhesive to the PDMS partially cured for 15~20 minutes at $60^{\circ}C$ and then the PDMS was fully cured for 12 hours at $60^{\circ}C$, exhibited the remarkably enhanced pull strength of 1,007~1,094 kPa. With the above mentioned bonding process, the delamination during the pull test was observed at the interface between the FPCB and the acrylic adhesive of the acrylic-silicone double sided tape.

Fabrication and Characterizations of Stretchable Thin-Film Transistor using Parylene Gate Insulating Layer (파릴렌 게이트 절연층을 사용한 신축성 박박 트랜지스터의 제작 및 특성)

  • Jung, Soon-Won;Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.721-726
    • /
    • 2017
  • We fabricated stretchable thin-film transistors(TFTs) on a polydimethylsiloxane substrate with patterned polyimide island structures by using an amorphous InGaZnO semiconductor and parylene gate insulator. The TFTs exhibited a field- effect mobility of $5cm^2V^{-1}s^{-1}$ and a current on/off ratio of $10^5$ at a relatively low operating voltage. Furthermore, the fabricated transistors showed no noticeable changes in their electrical performance for large strains of up to 50 %.

Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging (신축성 전자패키징을 위한 CNT-Ag 복합패드에서의 플립칩 공정)

  • Choi, Jung Yeol;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.17-23
    • /
    • 2013
  • As a basic research to develop stretchable electronic packaging technology, CNT-Ag composite pads were formed on top of Cu/Sn chip bumps and flip-chip bonded using anisotropic conductive adhesive. Average contact resistances of the flip-chip joints were measured with respect to bonding pressure and presence of the CNT-Ag composite pads. When Cu/Sn chip bumps with CNT-Ag composite pads were flip-chip bonded to substrate Cu pads at 25MPa or 50 MPa, contact resistance was too high to measure. The specimen processed by flip-chip bonding the Cu/Sn chip bumps with CNT-Ag composite pads to the substrate Cu pads exhibited an average contact resistance of $213m{\Omega}$. On the other hand, the flip-chip specimens processed by bonding Cu/Sn chip bumps without CNT-Ag composite pads to substrate Cu pads at 25MPa, 50MPa, and 100MPa exhibited average contact resistances of $370m{\Omega}$, $372m{\Omega}$, and $112m{\Omega}$, respectively.

AMOLED Display Technologies and Recent Trends - Focusing on Flexible Display Technology - (AMOLED 디스플레이 주요 기술 및 최근 동향 - 플렉서블 디스플레이 기술 위주로 -)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Starting with cathode ray tubes, displays are forming markets in the order of active marix organic light emitting diode (AMOLED) after PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). OLED is recognized as a key field for the development of each country preparing for the fourth industrial revolution, and especially Samsung Display and LG Display, which are the top industries in Korea, are leading the market with more than 90% of OLED shares. Currently, AMOLED has moved to the area that can be folded or bent. This technology is possible because TFT (Thin Film Transistor) and OLED may be formed on a flexible substrate. In the future, the technology will move to stretchable displays, and for this, the development of substrate materials is first, and then TFT and OLED devices should also be implemented with stretchable materials.

Monte Carlo Investigation of Spatially Adaptable Magnetic Behavior in Stretchable Uniaxial Ferromagnetic Monolayer Film

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • In this work, Monte Carlo simulation was employed to model the stretchable Ising monolayer film to investigate the effect of the spatial distance variation among magnetic atoms on magnetic behavior of the film. The exchange interaction was considered as functions of initial interatomic distance and the stretched distance (or the strain). Following Bethe-Slater picture, the magnetic exchange interaction took the Lennard-Jones potential-like function. Monte Carlo simulations via the Wolff and Metropolis algorithms were used to update the spin systems, where equilibrium and dynamic magnetic profiles were collected. From the results, the strain was found to have strong influences on magnetic behavior, especially the critical behavior. Specifically, the phase transition point was found to either increase or decrease depending on how the exchange interaction shifts (i.e. towards or away from the maximum value). In addition, empirical functions which predict how the critical temperatures scale with initial interatomic distance and the strain were proposed, which provides qualitatively view how to fine tune the magnetic critical point in monolayer film using the substrate modification induced strain.

Development of Hyperelastically Stretchable Strain Gauge based on Liquid Metals and Platinum Catalyzed Silicone Elastomers (액체금속과 백금촉매실리콘을 이용한 초탄성 스트레인게이지)

  • Kim, Seokbeom;Choi, Bumkyoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1235-1236
    • /
    • 2015
  • This paper reports hyperelastically stretchable strain gauges based on liquid metal (eutectic gallium-indium;EGaIn) and a platinum-catalyzed silicone elastomer ($Ecoflex^{TM}$). A custom liquidmetal patterning setup was operated to fabricate liquidmetal straingauge on flexible substrate. The printed strain gauges were tested under cyclic uniaxial stretching, twisting, even bending of human finger. By engineering the orientation of solid wires placed over two terminals of t he printed liquid metal resistor, we stably achieved the stretchability of ~800 % which is the highest value reported so far, to the best of our knowledge.

  • PDF

Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes (Au와 탄소나노튜브 복합체 전극의 연성 향상)

  • Woo, Jung-Min;Jeon, Joo-Hee;Kang, Ji-Yeon;Lee, Tae-Il;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.133-137
    • /
    • 2011
  • Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.