Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.111

Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages  

Park, Donghyeun (Department of Materials Science and Engineering, Hongik University)
Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 111-118 More about this Journal
Abstract
In order to develop a local stiffness-variant stretchable substrate with the soft PDMS/hard PDMS/FPCB configuration consisting of two stiffness-different polydimethylsiloxane (PDMS) parts and flexible printed circuit board, a FPCB was bonded to PDMS using the acrylic-silicone double-sided tape and the interfacial adhesion of the PDMS/FPCB was evaluated. The pull strength of the FPCB, which was bonded to the fully cured PDMS using the silicone adhesive of the double-sided tape, was 259 kPa and the delamination during the pull test occurred at the interface between the PDMS and the silicone adhesive. On the contrary, the bonding process, for which the FPCB was bonded using the silicone adhesive to the PDMS partially cured for 15~20 minutes at $60^{\circ}C$ and then the PDMS was fully cured for 12 hours at $60^{\circ}C$, exhibited the remarkably enhanced pull strength of 1,007~1,094 kPa. With the above mentioned bonding process, the delamination during the pull test was observed at the interface between the FPCB and the acrylic adhesive of the acrylic-silicone double sided tape.
Keywords
stretchable packaging; stretchable substrate; PDMS; FPCB; adhesion silicone adhesive;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Mata, A. J. Fleischman, and S. Roy, "Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/nanosystems", Biomed Microdevices, 7(4), 281 (2005).   DOI
2 S. Joshi, R. Bagani, L. Beckers, and R. Dekker, "Novel Method for Adhesion between PI-PDMS using Butyl Rubber for Large Area Flexible Patches", Proceedings, 1, 307 (2017).   DOI
3 D. Welch, and J. B. Christen, "Seamless Intergration of CMOS and Microfluidics using Flip Chip Bonding", J. Micromech. Microeng., 23, 035009 (2013).   DOI
4 L. Tang, and N. Y. Lee, "A Facile Route for Irreversible Bonding of Plastic-PDMS Hybrid Microdevices at Room Temperature", Lap Chip, 10, 1274 (2010).   DOI
5 J. Wu, and N. Y. Lee, "One-step Surface Modification for Irreversible Bonding of Varios Plastics with a Poly(dimethylsiloxane) Elastomer at Room Temperature", Lap Chip, 14, 1564 (2014).   DOI
6 M. E. Vlachopoulou, A. Tserepi, P. Pavli, P. Argitis, M. Sanopoulou, and K. Misiakos, "A Low Temperature Surface Modification Assisted Method for Bonding Plastic Substrates", J. Micromech. Microeng., 19, 015007 (2009).   DOI
7 I. Burdallo, C. Jimenez-Jorquera, C. Fernandez-Sanchez, and A. Baldi, "Integration of Microelectronic Chips in Microfluidic Systems on Printed Circuit Board", J. Micromech. Microeng., 22, 105022 (2012).   DOI
8 Z. Wang, A. A. Volinsky, and N. D. Gallant, "Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument", J. Appl. Polym. Sci., 131, 41050 (2014).
9 M. V. Hoang, H. J. Chung, and A. L. Elias, "Irreversible Bonding of Polyimide and Polydimethylsiloxane (PDMS) Based on a Thiol-Epoxy Click Reaction", J. Micromech. Microeng., 26, 105019 (2016).   DOI
10 H. A. Oh, D. Park, S. J. Shin, and T. S. Oh, "Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015).   DOI
11 H. A. Oh, D. Park, K. S. Hahn, and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", 22(4), 91 (2015).   DOI
12 J. Y. Choi, D. W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014).   DOI
13 J. Y. Choi, and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013).   DOI
14 D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008).   DOI
15 M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis, and P. H. M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", Proc. 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (Euro-SimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
16 J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).   DOI
17 J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008).   DOI
18 T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann, and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
19 T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008).   DOI
20 M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008).   DOI
21 S. Popovics, and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).
22 S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee, and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015).   DOI
23 C. R. Barrett, A. S. Tetelman, and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).
24 S. Popovics, "Quantitative Deformation Model for Two-phase Composites Including Concrete", Mater. Struct., 20, 171 (1987).   DOI
25 J. Y. Choi, D. H. Park, and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012).   DOI
26 T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009).   DOI
27 J. H. Ahn, and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
28 D. H. Kim, and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008).   DOI