DOI QR코드

DOI QR Code

Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging

신축성 전자패키징을 위한 CNT-Ag 복합패드에서의 플립칩 공정

  • Choi, Jung Yeol (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 최정열 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2013.12.16
  • Accepted : 2013.12.26
  • Published : 2013.12.30

Abstract

As a basic research to develop stretchable electronic packaging technology, CNT-Ag composite pads were formed on top of Cu/Sn chip bumps and flip-chip bonded using anisotropic conductive adhesive. Average contact resistances of the flip-chip joints were measured with respect to bonding pressure and presence of the CNT-Ag composite pads. When Cu/Sn chip bumps with CNT-Ag composite pads were flip-chip bonded to substrate Cu pads at 25MPa or 50 MPa, contact resistance was too high to measure. The specimen processed by flip-chip bonding the Cu/Sn chip bumps with CNT-Ag composite pads to the substrate Cu pads exhibited an average contact resistance of $213m{\Omega}$. On the other hand, the flip-chip specimens processed by bonding Cu/Sn chip bumps without CNT-Ag composite pads to substrate Cu pads at 25MPa, 50MPa, and 100MPa exhibited average contact resistances of $370m{\Omega}$, $372m{\Omega}$, and $112m{\Omega}$, respectively.

신축성 전자패키징 기술개발을 위한 기초연구로서 Cu/Sn 범프에 CNT-Ag 복합패드를 형성한 칩을 이방성 전도접착제를 사용하여 플립칩 본딩한 후, CNT-Ag 복합패드의 유무 및 본딩압력에 따른 플립칩 접속부의 접속저항을 측정하였다. CNT-Ag 복합패드가 형성된 Cu/Sn 칩 범프를 25MPa과 50MPa의 본딩압력으로 플립칩 본딩한 시편들은 접속저항이 너무 높아 측정이 안되었으며, 100MPa의 본딩압력으로 플립칩 본딩한 시편은 $213m{\Omega}$의 평균 접속저항을 나타내었다. 이에 비해 CNT-Ag 복합패드가 없는 Cu/Sn 칩 범프를 사용하여 25MPa, 50 MPa 및 100 MPa의 본딩압력으로 플립칩 본딩한 시편은 각기 $1370m{\Omega}$, $372m{\Omega}$$112m{\Omega}$의 평균 접속저항을 나타내었다.

Keywords

References

  1. Wikipedia, Wikipedia Foundation Inc. Dec. (2013) from http://en.wikipedia.org/wiki/IPhone_(first_generation)
  2. M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis, and P.H.M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
  3. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013).
  4. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008), https://doi.org/10.1063/1.2955829
  5. T. Lher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann, and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  6. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  7. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  8. M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of metal interconnects for stretchable electronic circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
  9. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). https://doi.org/10.1038/nmat2459
  10. J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  11. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  12. J. Y. Choi, D. H. Park and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012). https://doi.org/10.6117/kmeps.2012.19.3.071
  13. T. Lher, "Stretchable Electronic Systems", OnBoard Technology, p.18 (2007).
  14. S. P. Lacoura, S. Wagner, Z. Huang, and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  15. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Mature Lett., 457, 706 (2009). https://doi.org/10.1038/nature07719
  16. T. S. Hansen, K. West, O. Hassager, and N. B. Larsen, "Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers", Adv. Funct. Mater., 17, 3068 (2007).
  17. J. A. Rogers, T. Someya, Y. Huang, "Materials and Mechanics for Stretchable Electronics", Science, 327, 1603 (2010). https://doi.org/10.1126/science.1182383
  18. N. Lu, J. Yoon, and Z. Suo, "Delamination of Stiff Islands Patterned on Stretchable Substrates", Int. J. Mat. Res., 98, 8 (2007).
  19. J. Y. Choi and T. S. Oh, "Flip Chip Process by Using the Cu- Sn-Cu Sandwich Joint Structure of the Cu Pillar Bumps", J. Microelectron. Packag. Soc., 16(4), 9 (2009).
  20. J. Y. Choi, M. Y. Kim, S. K. Lim, and T. S. Oh, "Flip Chip Process for RF Packages Using Joint Structures of Cu and Sn", J. Microelectron. Packag. Soc., 16(3), 67 (2009).
  21. C. W. Tan, Y. C. Chan, and N. H. Yeung, "Effect of Autoclave Test on Anisotropic Conductive Joint", Microelectron. Reliab., 43, 279 (2003). https://doi.org/10.1016/S0026-2714(02)00293-7
  22. J. H. Zhang, Y. C. Chan, M. O. Alam, and S. Fu, "Contact Resistance and Adhesion Performance of ACF Interconnections to Aluminum Metallization", Microelectron. Reliab., 43, 1303 (2003). https://doi.org/10.1016/S0026-2714(03)00165-3
  23. T. S. Oh, K. Y. Lee, and H. J. Won, "Flip-Chip Process using Interlocking-Bump Joints", IEEE Trans. Comp. Packag. Technol., 32, 909 (2009). https://doi.org/10.1109/TCAPT.2009.2015594
  24. J. Y. Choi and T. S. Oh, "A Flip Chip Process Using an Interlocking-Joint Structure Locally Surrounded by Non-conductive Adhesive", Korean J. Met. Mater., 50, 785 (2012).
  25. C. Brun, C. C. Yap, D. Tan, S. Bila, S. Paccini, D. Baillargeat, and B. K. Tay, "Flip Chip Based on Carbon Nanotube-Carbon Nanotube Interconnected Bumps for High-Frequency Applications", IEEE Trans. Nanotechnol., 12, 609 (2013). https://doi.org/10.1109/TNANO.2013.2264534
  26. C. C. Yap, C. Brun, D. Tan, H. Li, E. H. T. Teo, D. Baillargeat, and B. K. Tay, "Carbon Nanotube Bumps for the Flip Chip Packaging System", Nanoscale Res. Lett., 7, 105 (2012). https://doi.org/10.1186/1556-276X-7-105
  27. L. Aryasomayajula and K. J. Wolter, "Carbon Nanotube Composites for Electronic Packaging Applications: A Review", J. Nanotechnol., 2013, 296517 (2013).

Cited by

  1. Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.125
  2. Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.039
  3. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2013, https://doi.org/10.6117/kmeps.2019.26.4.047
  4. 강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성 vol.26, pp.4, 2013, https://doi.org/10.6117/kmeps.2019.26.4.055