• Title/Summary/Keyword: stresses on failure plane

Search Result 40, Processing Time 0.023 seconds

A Study on the Contact Shape for Failure Mitigation (손상저감을 위한 접촉부형상의 고찰)

  • Kim, Hyung-Kyu;Yoon, Kyung-Ho;Kang, Heung-Seok;Song, Kee-Nam;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1068-1073
    • /
    • 2003
  • Method for contact failure mitigation is studied in this paper. The focus is laid on the contact shape that eventually influences the internal stresses. Contact mechanics is consulted within the frame of plane problem. Hertzian contact, rounded punch and uniform traction profiles are considered. Frictional as well as frictionless contact is also considered. As results, the higher traction profile induced by the rounded punch reveals the greatest among the considered shapes. Therefore, it is suggested to increase the edge radius as large as possible if a contact body of punch shape needs to be designed. It is also found that uniform traction cannot always provide the solution of contact failure mitigation.

  • PDF

Fretting fatigue life prediction for Design and Maintenance of Automated Manufacturing System (생산자동화 시스템의 설계 및 정비를 위한 프레팅 피로수명 예측)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Predicting the failure life of automated manufacturing systems can reduce overall downtime, maintenance costs, and total plant operation costs. Therefore, there is a growing interest in fatigue failure mechanisms as the safety or service life assessment of manufacturing systems becomes an important issue. In particular, fretting fatigue is caused by repeated tangential stresses that are generated by friction during small amplitude oscillatory movements or sliding between two surfaces pressed together in intimate contact. Previous studies in fretting fatigue have observed size effects related to contact width such that a critical contact width exists where there is drastic change in the fretting fatigue life. However, most of them are the two-dimensional finite element analyses based on the plane strain assumption. The purpose of this study is to investigate the contact size effects on the three-dimensional finite element model of a finite width of a flat specimen and a cylindrical pad exposed to fretting fatigue. The contact size effects were analyzed by means of the stress and strain averages at the element integration points of three-dimensional finite element model. This study shows that the fretting fatigue life of manufacturing systems can be predicted by three-dimensional finite element analysis based on SWT critical plane model.

A Study on the Damage of CFRP Laminated Composites Under Out-of-Plane Load (횡방향 하중을 받는 CFRF 적층복합재의 내부손상에 관한 연구)

  • Kim, Moon-Saeng;Park, Seung-Bum;Oh, Deug-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.98-109
    • /
    • 1995
  • An investigation was performed to study the inner damage of laminated composite plates subjected to out-of-plane load. During the investigation, inpact velocity and equivalent static load relationship was derived. Reddy's higher-order shear deformation theory(HSDT) and Hashin's failure criteria were used to determine inner stresses and damaged area. And impact testing was carried out on laminated composite plates by air gun type impact testing machine. The CFRP specimens were composed of [ .+-. 45 .deg. ]$_{4}$and [ .+-. 45 .deg. /0 .deg. /90 .deg. ]$_{2}$ stacking sequences with 0.75$^{t}$ * 26$^{w}$ * 100$^{l}$ (mm) dimension. After impact testing. As a result, a relationship holds between damaged area and impact energy, and a matrix cracking was caused by the interlaminar shear stress in the middle ply and was caused by the inplane transverse stress in the bottom ply.

  • PDF

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.

Stress concentrations around a circular hole in an infinite plate of arbitrary thickness

  • Dai, Longchao;Wang, Xinwei;Liu, Feng
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.143-157
    • /
    • 2010
  • This paper presents theoretical solutions for the three-dimensional (3D) stress field in an infinite isotropic elastic plate containing a through-the-thickness circular hole subjected to far-field in-plane loads by using Kane and Mindlin's assumption. The dangerous position, where the premature fracture or failure of the plate will take place, the expressions of the tangential stress at the surface of the hole and the out-of-plane stress constraint factor are found in a concise, explicit form. Based on the present theoretical solutions, a comprehensive analysis is performed on the deviated degree of the in-plane stresses from the related plane stress solutions, stress concentration and out-of-plane constraint, and the emphasis has been placed on the effects of the plate thickness, Poisson's ratio and the far-field in-plane loads on the stress field. The analytical solution shows that the effects of the plate thickness and Poisson's ratio on the deviation of the 3D in-plane stress components is obvious and could not be ignored, although their effects on distributions of the in-plane stress components are slight, and that the effect of the far-field in-plane loads is just on the contrary of that of the above two. When only the shear stress is loaded at far field, the stress concentration factor reach its peak value about 8.9% higher than that of the plane stress solutions, and the out-of-plane stress constraint factor can reach 1 at the surface of the hole and is the biggest among all cases considered.

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Modelling of timber joints made with steel dowels and locally reinforced by DVW discs

  • Guan, Zhongwei;Rodd, Peter
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.391-404
    • /
    • 2003
  • Local reinforcement in dowel type timber joints is essential to improve ductility, to increase load carrying capacity and to reduce the risk of brittle failure, especially in the case of using solid dowel. In many types of reinforcing materials available today, DVW (densified veneer wood) has been demonstrated to be the most advantages in terms of compatibility, embedding performance and ductility. Preliminary studies show that using appropriately sized DVW discs bonded into the timber interfaces may be an effective way to reinforce the connection. In this paper, non-linear 3-dimensional finite element models, incorporating orthotropic and non-linear material behaviour, have been developed to simulate structural performance of the timber joints locally reinforced by DVW discs. Different contact algorithms were applied to simulate contact conditions in the joints. The models were validated by the corresponding structural tests. Correlation between the experimental results and the finite element simulations is reasonably good. Using validated finite element models, parametric studies were undertaken to investigate effects of the DVW disc sizes and the end distances on shear stresses and normal stresses in a possible failure plane in the joint.

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab;Haeri, Hadi;Khaloo, Alireza
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.723-737
    • /
    • 2016
  • In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

Three Dimensional Deformation Behaviour of Compressible Sand (압축성(壓縮性) 모래의 3차원(次元) 변형거동(變形擧動))

  • Park, Byung Kee;Jeong, Jin Seob;Lim, Sung Chull
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.107-113
    • /
    • 1990
  • A series of cubical triaxial tests with independent control of the three principal stresses were performed on a compressible sand. All specimens which were formed by depositing the fine sand loosely, were used. It was found that slope of the stress-strain curve increased with increased b value, and the major principal strain at failure first remains approximetely constant for b values smaller than about 0.3 for drained condition and 0.6 for undrained condition respectively, and thereafter decreases with increasing value of b. The test results showed that the direction of the strain increments at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results are thus not in agreement with the normality criterion from classic plasticity theory. However, it was found that the projections of the plastic strain increment vectors on the octahedral plane are perpendicular to the faiure surface in that plane.

  • PDF