• 제목/요약/키워드: stresses in rail

검색결과 68건 처리시간 0.03초

장대레일 재설정 방법 개선 연구 (A study on the refined resetting for the continuous weleded rail)

  • 김우진;정찬묵;민경주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.386-394
    • /
    • 2007
  • Due to the transportability problems, long rail shall be from base rail unit, which is normally 100m for regular rail and 300m for high speed rail. After these rail units are transported from the fabricator to the site, the field weld would be performed.axial stresses in the long rail is mainly from the temperature differences at various locations the long rail. Also the gaps between each welds cause secondary axial stresses in the rail. In addition to these, re-welds the fractured rails, rail buckling, irregular rail vibration, rail twist also result innonuniform axial stresses in the rail. To obtain the rail buckling stability, the rail stresses shall be released due to the resetting of CWR. Traditionally two resetting of CWR methods have been applied, the one is rail heater and the other is rail tenser. these methods, the latter has been recommended because it has less limitation in the rail length and it is easier to minimized the force differences. But even in this method, the calculation is cumbersome and is not easy to find out the rail stress distribution itself.refined methodsxial stress resetting in the long rail is studied and this study be easily applied in the real construction. From this approach, more rational rail maintenance system can be expected.

  • PDF

Calculating the Contact Stress Resulting from Lateral Movement of the Wheel on Rail by Applying Hertz Theory

  • Ashofteh, Roya Sadat
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.148-154
    • /
    • 2013
  • This article has tried to review the maximum contact stresses in the contact area of the wheel and rail as a result of lateral movement of the wheel on rail by taking advantage from Hertz theory. Since wheel movement on rail is accompanied by lateral movement due to wheel profile conisity, so the contact point of wheel and rail is not constant and the contact stresses are therefore changeable in every single moment. Since the shape of rail profile and rail inclination, wheel diameter and the mechanical properties of the wheel and rail are effective on the stresses of contact area, these parameters have been studied by applying Hertz theory. This article aims to calculate the contact stresses in different parts on the wheel surface by using Hertz theory.

레일의 라체팅에 미치는 접촉응력 및 열응력에 대한 해석적 연구 (An Analytic Study on the Contact Stress and Thermal Stress of Rails)

  • 구병춘;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.767-774
    • /
    • 2007
  • Even though a constant repeated load is applied, plastic deformation may cumulate. This kind of behavior is called ratcheting. Ratcheting may lead to cracks and finally to failure of the rail. Usually ratcheting occurs on high rails in curves. Ratcheting is influenced by residual stresses, wheel-rail contact stresses, thermal stresses due to wheel/rail rolling contact, shear strength of the rail, strain hardening behavior, etc. In this study, contact stresses and thermal stresses are examined. It is found their value is considerable compared to the maximum contact pressure.

  • PDF

Worn Wheel/Rail Contact Simulation and Cultivated Shear Stresses

  • Noori, Ziaedin;Shahravi, Majid;Rezvani, Mohammad Ali
    • 한국철도학회논문집
    • /
    • 제16권2호
    • /
    • pp.93-98
    • /
    • 2013
  • Railway system is today the most efficient way for transportation in many cases in several forms of application. Yet, wear phenomenon, profile evolution, fatigue, fracture, derailment are the major worries (financial and safety) in this system which force significant direct and indirect maintenance costs. To improve the cyclic maintenance procedures and the safety issues, it can be very satisfactory to be informed of the state of wheel/rail interaction with mileage. In present paper, an investigation of the behavior of the shear stresses by logged distance is approached, by implementing the field measurement procedure, in order to determine the real conduct of the most important cause of defects in wheel/rail contact, shear stress. The results coming from a simulation procedure indicate that the amounts of shear stresses are still in high-magnitudes when the wheel and rail are completely worn; even though in simulation based on the laboratory measurements of profile evolutions, the stresses become significantly reduced by logged distance.

대만 고속전철 단순교의 레일-구조물 상호작용 해석 (Rail-Structure Interaction Analysis for Simple Span Bridges of the Taiwan High Speed Railway)

  • Yong-Gil Kim
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.130-135
    • /
    • 2001
  • 고속 전철 특징 중의 하나인 장대 레일의 사용으로 인하여 발생하는 추가 응력과 변위에 대하여 대만 고속전철 교량에 대해서 검토한다. 또한 대만 고속 전철 교량 시방 규정의 중요한 특징인 사용지진을 레일-구조물 해석에 고려하도록 하는 규정을 적용 후 단순교의 응력 및 상대변위를 검토한다. 지진 시 지반 운동을 고려하며, 단순교의 지진 응답을 변위로 레일-구조물 상호 작용 해석에 적용시킨다. 지진하중 고려 유무에 따른 단순교의 응력 및 상대 변위를 검토한다.

  • PDF

분기기와 교량의 상호작용 특성에 관한 연구 (A study on the axial force and displacement characteristics of turnout on a bridge)

  • 양신추;김인재;김은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

레일용접부 피로수명 예측 (Prediction of bending fatigue lifes of rail welded parts)

  • 양신추;이진욱;나성훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.390-397
    • /
    • 1999
  • This paper investigates about the prediction of rail bending fatigue lifes for the purpose of the effective maintenance of surface irregularities of rail welded parts. The rail bending stresses are calculated using a track dynamic analysis program. The rail surface irregularities measured in situ are given as inputs in the analyses. On the other hand, the S-N curves are derived based on the results of bending fatigue tests. Using data found so far, rail fatigue lifes are estimated adopting a modified Miner's rule. The useful guides for maintenance of rail welded part are proposed in terms of grinding period and grinding depth of rail surface irregularities.

  • PDF

복부절단법에 의한 레일의 잔류응력에 관한 연구 (A study ell the residual stress in rail by the web saw-cut method)

  • 서정원;구병춘;정우현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.234-241
    • /
    • 1999
  • Rails have residual stresses produced during manufacturing processes. The residual stresses play all important role on brittle fracture, fatigue strength and derailment by producing cracks in the web of rail. The web saw-cut test is a technique developed to measure the bulk longitudinal residual stress level. It is a simple mettled to estimate a stress intensity factor, $_{4}$ for a web crack by using the radii of curvature of the upper and lower portions of a cut rail. But according to this method, $_{4}$ varies along the rail length because the curvatures along tile rail length vary In this paper, tile residual stress was estimated by Finite Element Method and tile web saw-cut method. In addition tile variation of the residual stress with time was investigated.

  • PDF

레일의 제조공정에서 비금속 개재물에 의한 레일의 잔류응력 해석 (Analysis of the Residual Stress Produced by non-metallic Inclusions during Rail Manufacturing Process)

  • 구병춘;정우현;이희성;서정원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.352-357
    • /
    • 1999
  • During the cooling process of rail, residual stresses are produced due to the difference of the coefficients of thermal expansion between rail and inhomogeneous non-metallic inclusions such as sulphides and oxides. A micro-mechanical approach is used to obtain the stresses in the inclusions and matrix, After obtaining the stress of an elliptical inhomogeneous inclusion in an infinite domain, average stresses of randomly distributed spherical inclusions are obtained by use of Mori-Tanaka's self consistent method. The magnitude of the calculated residual stress is near to the yield stress of the matrix in case of the spherical inclusions.

  • PDF

차륜-레일 구름접촉에 의한 라체팅 모델링 (Simulation of Ratcheting in Wheel-Rail Contact)

  • 구병춘
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.311-316
    • /
    • 2008
  • 일정한 크기의 응력이 반복적으로 작용할 때 매 사이클마다 변형이 증가하는 현상을 라체팅이라고 한다. 라체팅은 레일이나 차륜의 균열발생 기구의 하나이지만 실험적, 이론적 측면에서 아직 많은 연구를 필요로 하는 분야이다. 레일의 경우 접선력 방향으로 소성변형이 축적되는 것으로 알려져 있다. 본 연구에서는 차륜-레일의 구름 접촉에서 발생하는 응력의 이론해에 대해 살펴보고, 라체팅을 모델링 할 수 있는 비선형 이동 경화법칙을 사용하는 탄소성 구성방정식을 적용하여 라체팅 현상을 모델링 하였다. 일정 크기의 접촉력이 반복적으로 작용할 때 매 사이클마다 일정 크기의 소성변형이 발생하였다.