• Title/Summary/Keyword: stresses in rail

Search Result 68, Processing Time 0.11 seconds

A study on the refined resetting for the continuous weleded rail (장대레일 재설정 방법 개선 연구)

  • Kim, Woo-Jin;Jung, Chan-Mook;Min, Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.386-394
    • /
    • 2007
  • Due to the transportability problems, long rail shall be from base rail unit, which is normally 100m for regular rail and 300m for high speed rail. After these rail units are transported from the fabricator to the site, the field weld would be performed.axial stresses in the long rail is mainly from the temperature differences at various locations the long rail. Also the gaps between each welds cause secondary axial stresses in the rail. In addition to these, re-welds the fractured rails, rail buckling, irregular rail vibration, rail twist also result innonuniform axial stresses in the rail. To obtain the rail buckling stability, the rail stresses shall be released due to the resetting of CWR. Traditionally two resetting of CWR methods have been applied, the one is rail heater and the other is rail tenser. these methods, the latter has been recommended because it has less limitation in the rail length and it is easier to minimized the force differences. But even in this method, the calculation is cumbersome and is not easy to find out the rail stress distribution itself.refined methodsxial stress resetting in the long rail is studied and this study be easily applied in the real construction. From this approach, more rational rail maintenance system can be expected.

  • PDF

Calculating the Contact Stress Resulting from Lateral Movement of the Wheel on Rail by Applying Hertz Theory

  • Ashofteh, Roya Sadat
    • International Journal of Railway
    • /
    • v.6 no.4
    • /
    • pp.148-154
    • /
    • 2013
  • This article has tried to review the maximum contact stresses in the contact area of the wheel and rail as a result of lateral movement of the wheel on rail by taking advantage from Hertz theory. Since wheel movement on rail is accompanied by lateral movement due to wheel profile conisity, so the contact point of wheel and rail is not constant and the contact stresses are therefore changeable in every single moment. Since the shape of rail profile and rail inclination, wheel diameter and the mechanical properties of the wheel and rail are effective on the stresses of contact area, these parameters have been studied by applying Hertz theory. This article aims to calculate the contact stresses in different parts on the wheel surface by using Hertz theory.

An Analytic Study on the Contact Stress and Thermal Stress of Rails (레일의 라체팅에 미치는 접촉응력 및 열응력에 대한 해석적 연구)

  • Goo, Byeong-Choon;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.767-774
    • /
    • 2007
  • Even though a constant repeated load is applied, plastic deformation may cumulate. This kind of behavior is called ratcheting. Ratcheting may lead to cracks and finally to failure of the rail. Usually ratcheting occurs on high rails in curves. Ratcheting is influenced by residual stresses, wheel-rail contact stresses, thermal stresses due to wheel/rail rolling contact, shear strength of the rail, strain hardening behavior, etc. In this study, contact stresses and thermal stresses are examined. It is found their value is considerable compared to the maximum contact pressure.

  • PDF

Worn Wheel/Rail Contact Simulation and Cultivated Shear Stresses

  • Noori, Ziaedin;Shahravi, Majid;Rezvani, Mohammad Ali
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Railway system is today the most efficient way for transportation in many cases in several forms of application. Yet, wear phenomenon, profile evolution, fatigue, fracture, derailment are the major worries (financial and safety) in this system which force significant direct and indirect maintenance costs. To improve the cyclic maintenance procedures and the safety issues, it can be very satisfactory to be informed of the state of wheel/rail interaction with mileage. In present paper, an investigation of the behavior of the shear stresses by logged distance is approached, by implementing the field measurement procedure, in order to determine the real conduct of the most important cause of defects in wheel/rail contact, shear stress. The results coming from a simulation procedure indicate that the amounts of shear stresses are still in high-magnitudes when the wheel and rail are completely worn; even though in simulation based on the laboratory measurements of profile evolutions, the stresses become significantly reduced by logged distance.

Rail-Structure Interaction Analysis for Simple Span Bridges of the Taiwan High Speed Railway (대만 고속전철 단순교의 레일-구조물 상호작용 해석)

  • Yong-Gil Kim
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.130-135
    • /
    • 2001
  • The additional stresses and displacements produced by the use of long rail, typical of the high-speed railway, are investigated for the Taiwan high-speed railway bridges. In addition, an important special feature of the Taiwan high Speed Railway Design Specifications specifies that service earthquake has to be considered during the rail-structure interaction analysis before evaluating the stresses and relative displacements of the bridge. As pound motion is taken into account under seismic event the seismic response of the structure is applied as displacement in the rail-structure interaction analysis. The stresses and relative displacements of the structure are checked according to the consideration of seismic loading.

  • PDF

A study on the axial force and displacement characteristics of turnout on a bridge (분기기와 교량의 상호작용 특성에 관한 연구)

  • Yang, Shin-Chu;Kim, In-Jae;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

Prediction of bending fatigue lifes of rail welded parts (레일용접부 피로수명 예측)

  • 양신추;이진욱;나성훈
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.390-397
    • /
    • 1999
  • This paper investigates about the prediction of rail bending fatigue lifes for the purpose of the effective maintenance of surface irregularities of rail welded parts. The rail bending stresses are calculated using a track dynamic analysis program. The rail surface irregularities measured in situ are given as inputs in the analyses. On the other hand, the S-N curves are derived based on the results of bending fatigue tests. Using data found so far, rail fatigue lifes are estimated adopting a modified Miner's rule. The useful guides for maintenance of rail welded part are proposed in terms of grinding period and grinding depth of rail surface irregularities.

  • PDF

A study ell the residual stress in rail by the web saw-cut method (복부절단법에 의한 레일의 잔류응력에 관한 연구)

  • 서정원;구병춘;정우현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.234-241
    • /
    • 1999
  • Rails have residual stresses produced during manufacturing processes. The residual stresses play all important role on brittle fracture, fatigue strength and derailment by producing cracks in the web of rail. The web saw-cut test is a technique developed to measure the bulk longitudinal residual stress level. It is a simple mettled to estimate a stress intensity factor, $_{4}$ for a web crack by using the radii of curvature of the upper and lower portions of a cut rail. But according to this method, $_{4}$ varies along the rail length because the curvatures along tile rail length vary In this paper, tile residual stress was estimated by Finite Element Method and tile web saw-cut method. In addition tile variation of the residual stress with time was investigated.

  • PDF

Analysis of the Residual Stress Produced by non-metallic Inclusions during Rail Manufacturing Process (레일의 제조공정에서 비금속 개재물에 의한 레일의 잔류응력 해석)

  • 구병춘;정우현;이희성;서정원
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.352-357
    • /
    • 1999
  • During the cooling process of rail, residual stresses are produced due to the difference of the coefficients of thermal expansion between rail and inhomogeneous non-metallic inclusions such as sulphides and oxides. A micro-mechanical approach is used to obtain the stresses in the inclusions and matrix, After obtaining the stress of an elliptical inhomogeneous inclusion in an infinite domain, average stresses of randomly distributed spherical inclusions are obtained by use of Mori-Tanaka's self consistent method. The magnitude of the calculated residual stress is near to the yield stress of the matrix in case of the spherical inclusions.

  • PDF

Simulation of Ratcheting in Wheel-Rail Contact (차륜-레일 구름접촉에 의한 라체팅 모델링)

  • Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • Ratcheting is a cyclic accumulation of strain under a cyclic loading. It is a kind of mechanisms which generate cracks in rail steels. Though some experimental and numerical study has been performed, modeling of ratcheting is still a challenging problem. In this study, an elastic-plastic constitutive equation with non-linear kinematic hardening equation was applied. Contact stresses in wheel-rail were analyzed. Under the tangential stress of the contact stresses, a cyclic stress-strain relation was obtained by using the model. A constant ratcheting strain per cycle was accumulated.