• Title/Summary/Keyword: stress-strain hysteresis

Search Result 66, Processing Time 0.028 seconds

Energy dissipation response of brick masonry under cyclic compressive loading

  • Senthivel, R.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.405-422
    • /
    • 2003
  • Scaled brick masonry panels were tested under cyclic unialxial compression loading to evaluate its deformation characteristics. An envelope stress - strain curves, a common point curves and stability point curves were obtained for various cyclic test conditions. Loops of the stress-strain hysteresis were used to determine the energy dissipation for each cycle. Empirical expressions were proposed for the relations between energy dissipation and envelope and residual strains. These relations indicated that the decay of masonry strength starts at about two-third of peak stress.

The study on effects of porosity, strain and grain size on B-H Hysteresis Ioop (기공율, 응력 및 입자 크기가 B-H Hysteresis loop 특성에 미치는 영향 연구)

  • 김성재;정명득;백종규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.89-93
    • /
    • 1994
  • Effects of density, inner-stress, and grain size on B-H hysteresis loop properties of Mg-ferrite were investigated. As the sintered bulk density increase, coercive force($H_c$) decreasand squareness ratio increase. Coercive force was very dependent on inner-stress in sintered body, so coercive force increase from 1.95[Oe] to 4.35[Oe] when inner stress present in bulk, however, the squareness ratio was almost not changed Coercive force and squareness ratio were independent on grain size of sintered body which is between 6-11[$\mu\textrm{m}$]

  • PDF

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

An Finite Element Analysis for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel(II) - Analysis of elasto-viscoplastic thermal stress - (탄소강의 퀜칭처리 과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(II) - 탄점소성 열응력 해석 -)

  • Kim, Ok-Sam;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.147-158
    • /
    • 1996
  • Generally, analytical consideration on the behaviour of metallic structures during quenching process, and analysis on the thermal stress and deformation after heat treatment are very important in presumption of crack and distorsion of quenched material. In this study a set of constitute equations relevant to the analysis of thermo elasto-viscoplastic materials with strain hysteresis during quenching process way presented on the basis of contimuum thermo-dynamics mechanics. The thermal stresses were numerically calculated by finite element technique of weighted residual method and the principle of virtual work. In the calculation process, the temperature depandency of physical and mechaniclal properties of the material in consideration. On the distribution of elasto-viscoplastic thermal stresses according to radial direction, axial and tangential stress are tensile stress(50MPa, 1.5GPa and 300MPa) in surface and compressive stress(-1.2GPa, -1.14GPa and -750MPa) in the inner part on the other hand, radial stress is tensile stress(900MPa) in area of analysis. According to axial direction, tangential stress gradients are average 60MPa/mm on the whole. The reversion of stress takes place at 11.5 to 16.8mm from the center in area of analysing.

  • PDF

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

Analysis of Stress-Strain Hysteresis Behavior in Metal Composites (단섬유 금속복합재료의 응력-변형률 히스테리시스 거동 해석)

  • 김홍건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.132-139
    • /
    • 1997
  • The strengthening mechanism of short fiber or whisker reinforced metal matrix composites has been studied by a continuum mechanics treatment utilizing finite element analysis (FEM). To assess the tensile and compressive constitutive responses, a constraint-unconstraint comparative study based on stree-strain hysteresis loop has been performed. For analysis procedures, the aligned axisymmetric single fiber model and the stress grouping technique have been implemented to evaluate the domain-based field quantities. Results indicated that the development of significant triaxial stresses within the matrix both for the tensile and compressive loading, due to the constraint imposed by reinforcements, provides and important contribution to strengthening. It was also found that fiber stresses are not only sensitive to the fiber/fiber interaction effects but also substantially contribute to the composite strengthening both for the tensile and compressive loading.

  • PDF

Mechanical Performance and Stress-Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

  • Lin, Feng;Wu, Xiaobao
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.435-450
    • /
    • 2016
  • Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and stiffness degradation compared to those responses under tensile loadings. The shape of the hysteresis loops of load-deformation curves was similar to that under incremental tensile loading. For the purpose of structural analysis, stress-strain relationships were presented for grouted splices under various loadings.

A Study on the Shape Memory Characteristic Behaviors of Ti-42.5at%Ni-10at.% Cu Alloys (Ti-42.5at.%Ni-10at.%Cu합금의 형상기억특성에 관한 연구)

  • Woo, Heung-Sik;Park, Yong-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • Shape memory recoverable stress and strain of Ti-42.5at%Ni-10at%Cu alloys were measured by means of constant temperature tensile tests. The alloys' transformation behavior is B2 - B19 by DSC result. The strain by tensile stress were perfectly recovered by heating at any testing conditions but shape memory recoverable stress increased to 66MPa and then slightly decreased. Transformation temperatures from thermal cycling under constant uniaxial applied tensile loads linearly increased by increasing tensile load and their thermal hysteresis are about 110K and their maximum recoverable strain is 6.5% at 100MPa condition.

Physical Properties of Polyester, Tencel and Cotton MVS Blended Yarns with Yarn counts and Blend Ratio (PET, Tencel, Cotton MVS 혼방사의 섬도와 혼용률에 따른 물성 특성)

  • Sa, A-Na;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.17 no.2
    • /
    • pp.287-294
    • /
    • 2015
  • This study investigates the physical properties of Murata Vortex Spinning (MVS) blended yarn with yarn count(20's, 30's, 40's) and blend ratio(Polyester 100, Polyester70:Cotton30, Polyester50:Cotton50, Polyester30:Cotton70, and Polyester50:Tencel40:Cotton10). This study evaluated tenacity, elongation, bending rigidity, bending hysteresis, hairiness coefficient, irregularity and twist number. The structure of MVS blended yarn influenced stress, strain, bending rigidity, bending hysteresis and the hairiness coefficient of MVS blended yarn decreased as the yarn count increased. MVS blended yarn consists of core and sheath. The core of MVS blended yarn is composed of a parallel fiber with a wrapping fiber that covers thecore fiber. This special structure of the MVS blended yarn effects the physical properties of the yarn; in addition, the mechanical properties of the component fibers influenced the stress, strain, bending rigidity, bending hysteresis and hairiness coefficient of MVS blended yarn with the blend ratio. Polyester decreases and cotton increases resulted in decreased physical properties. A similar polyester content increased the tencel and physical properties. Appropriate physical properties and a variety of touch expression can be realized through a correct blend ratio.

Fabrication and Performance Evaluation of Thin Polysilicon Strain Gauge Bonded to Metal Cantilever Beam (금속 외팔보에 접착된 박막 실리콘 스트레인 게이지의 제작 및 성능 평가)

  • Kim, Yong-Dae;Kim, Young-Deok;Lee, Chul-Sub;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • In this paper, we propose a sensor design by using a polysilicon strain gauge bonded to a metal diaphragm. The fabrication process of the thin polysilicon strain gauges having thicknesses of $50\;{\mu}m$ was established using conventional MEMS technologies; further, the technique of glass frit bonding of the polysilicon strain gauge to the stainless steel diaphragm was established. Performance of the polysilicon strain gauge bonded to the metal cantilever beam was evaluated. The gauge factor, temperature coefficient of resistance (TCR), nonlinearity, and hysteresis of the polysilicon strain gauge were measured. The results demonstrate that the resistance increases linearly with tensile stress, while it decreases with compressive stress. The value of the gauge factor, which represents the sensitivity of strain gauges, is 34.0; this value is about 7.15 times higher than the gauge factor of a metal-foil strain gauge. The resistance of the polysilicon strain gauge decreases linearly with an increase in the temperature, and TCR is $-328\;ppm/^{\circ}C$. Further, nonlinearity and hysteresis are 0.21 % FS and 0.17 % FS, respectively.