• Title/Summary/Keyword: stress-inducible

Search Result 281, Processing Time 0.043 seconds

Neuroprotective effects of paeoniflorin against neuronal oxidative stress and neuroinflammation induced by lipopolysaccharide in mice

  • Meng, Hwi Wen;Lee, Ah Young;Kim, Hyun Young;Cho, Eun Ju;Kim, Ji Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Oxidative stress and neuroinflammation play important roles in the pathogenesis of Alzheimer's disease (AD). This study investigated the protective effects of paeoniflorin (PF) against neuronal oxidative stress and neuroinflammation in lipopolysaccharide (LPS)-induced mice. The brains of LPS-injected control group showed significantly increased neuroinflammation by activating the nuclear factor kappa B (NF-κB) pathway and increasing inflammatory mediators. However, administration of PF significantly attenuated oxidative stress by inhibiting lipid peroxidation, nitric oxide levels, and reactive oxygen species production in the brain; PF at doses of 5 and 10 mg/kg/day downregulated the expression of NF-κB pathway-related proteins and significantly decreased inflammatory mediators including inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the levels of brain-derived neurotrophic factor and its receptor, tropomycin receptor kinase B, were significantly increased in PF-treated mice. Furthermore, acetylcholinesterase activity and the ration of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X were significantly reduced by PF in the brains of LPS-induced mice, resulting in the inhibition of cholinergic dysfunction and neuronal apoptosis. Thus, we can conclude that administration of PF to mice prevents the development of LPS-induced AD pathology through the inhibition of neuronal oxidative stress and neuroinflammation, suggesting that PF has a therapeutic potential for AD.

Construction and Analysis of Binary Vectors for Co-Overexpression, Tissue- or Development-Specific Expression and Stress-Inducible Expression in Plant (식물에서 표적 유전자의 동시 과발현, 조직/발달 특이적 발현 및 스트레스 유도성 발현을 위한 binary 벡터의 제작과 분석)

  • Lee, Young-Mi;Park, Hee-Yeon;Woo, Dong-Hyuk;Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1314-1323
    • /
    • 2010
  • In this study, we constructed various kinds of binary vectors with the pPZP backbone for co-overexpression, tissue- or development-specific expression and stress-inducible expression, and validated them for ectopic expression of target genes. Using a modified CaMV 35S promoter, a binary vector was generated for co-overexpression of two different genes and was confirmed to be efficient for overexpressing two different target genes at the same time and place. Binary vectors containing At2S3, KNAT1 or LFY promoters were constructed for tissue-specific or development-specific gene expression, and the binary vectors were suited for embryo/young seedling stage-, shoot apical meristem- or leaf primordia-specific expressions. Furthermore, the binary vectors containing RD29A or AtNCED3 promoters were validated as suitable vectors for gene expression induced by abiotic stresses such as high salt, ABA, MV and low temperature. Taken together, the binary vectors constructed in this study would be very useful for analyzing the biological functions of target genes and molecular mechanisms through ectopic expression.

Platform of Hot Pepper Stress Genomics: Indentification of Stress Inducible Genes in Hot Pepper (Capsicum annuum L.) Using cDNA Microarray Analysis

  • Chung, Eun-Jo;Lee, Sanghyeob;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.81.1-81
    • /
    • 2003
  • Although plants have evolved to possess various defense mechanisms from local biotic and abiotic stressors, most of yield loss is caused by theses stressors. Recent studies have revealed that several different stress responsive reactions are inter-networking. Therefore, the identification and dissection of stress responsive genes is an essential and first step towards understanding of the global defense mechanism in response to various stressors. For this purpose, we applied cDNA microarray analysis, because it has powerful ability to monitor the global gene expression in a specific situation. To date, more than 10,000 non-redundant genes were identified from seven different cDNA libraries and deposited in our EST database (http://plant.pdrs.re.kr/ks200201/pepper.html). For this study, we have built 5K cDNA microarray containing 4,685 unigene clones from three different cDNA libraries. Monitoring of gene expression profiles of hot pepper interactions with biotic stress, abiotic stresses and chemical treatments will be presented. Although this work shows expression profiling at the sub-genomic level, this could be a good starting point to understand the complexity of global defense mechanism in hot pepper.

  • PDF

Isolation and Characterization of Salt Street Signaling Components from Yeast Saccharomyces cerevisiae

  • Yun, Dae-Jin;Lee, Jiyoung;Shin, Dongjin;Lee, Boyoung
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.30-33
    • /
    • 2001
  • To identify novel components involved in the salt stress signaling pathway of yeast cells, we used mTn3-mediated transposon tagging library and screened mutants displaying enhanced tolerance to NaCl. Southern blot analysis indicated that more than 80% of the sre (salt resistant) mutants possessed only one insertion of the tagged transposon, suggesting that the NaCl resistant phenotype was mediated by a single gene in the majority of the mutants. To define the role of SRE genes in the salt stress signaling pathway, we introduced NaCl stress-inducible ENA1::LacZ construct into the sre mutants and examined the expression of ${\beta}$-galactosidase activity. Interestingly, we could detect high level of ${\beta}$-galactosidase activity without any NaCl treatment in the sre-3, 4, 6 and 7 mutants. These results indicate that SRE-3, 4, and 7 gene are components of salt stress signaling pathway of yeast cells.

  • PDF

Activity and Isozyme Profile of Antioxidative Enzymes at Booting Stage of Rice Treated with Cold Water

  • Kim Ki-Young;Kim Bo-Kyeong;Shin Mun-Sik;Choung Jin-Il;Ko Jae-Kweon;Kim Jung-Kon;Lim Jung-Hyun;Yun Song-Joon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.289-294
    • /
    • 2004
  • This study was carried out to investigate the antioxidative enzymes and isozymes between chilling-tolerant and -susceptible varieties at the booting stage under cold water stress $(13^{\circ}C)$ in japonica rice. Total SOD, CAT, POX, and GR activities on the basis of protein were found to be important factors to defend cold water stress. Especially, SOD and CAT activities showed distinctive differences between chilling-tolerant and -susceptible varieties. Chilling-tolerant varieties were higher than chilling-susceptible varieties for SOD and CAT activities. One of eight isozyme bands for SOD was a inducible isoform. Three isozymes for CAT and one isozyme for POX were closely correlated with defense to cold water stress. Total GR activities except Stejaree 45 on the basis fresh weight and POX were increased by cold water stress, but there was no difference between chilling-tolerant and -sus­ceptible varieties.