Browse > Article
http://dx.doi.org/10.3839/jabc.2022.004

Neuroprotective effects of paeoniflorin against neuronal oxidative stress and neuroinflammation induced by lipopolysaccharide in mice  

Meng, Hwi Wen (Department of Food Science and Nutrition, Pusan National University)
Lee, Ah Young (Department Food Science, Gyeongsang National University)
Kim, Hyun Young (Department Food Science, Gyeongsang National University)
Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University)
Kim, Ji Hyun (Department Food Science, Gyeongsang National University)
Publication Information
Journal of Applied Biological Chemistry / v.65, no.1, 2022 , pp. 23-31 More about this Journal
Abstract
Oxidative stress and neuroinflammation play important roles in the pathogenesis of Alzheimer's disease (AD). This study investigated the protective effects of paeoniflorin (PF) against neuronal oxidative stress and neuroinflammation in lipopolysaccharide (LPS)-induced mice. The brains of LPS-injected control group showed significantly increased neuroinflammation by activating the nuclear factor kappa B (NF-κB) pathway and increasing inflammatory mediators. However, administration of PF significantly attenuated oxidative stress by inhibiting lipid peroxidation, nitric oxide levels, and reactive oxygen species production in the brain; PF at doses of 5 and 10 mg/kg/day downregulated the expression of NF-κB pathway-related proteins and significantly decreased inflammatory mediators including inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the levels of brain-derived neurotrophic factor and its receptor, tropomycin receptor kinase B, were significantly increased in PF-treated mice. Furthermore, acetylcholinesterase activity and the ration of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X were significantly reduced by PF in the brains of LPS-induced mice, resulting in the inhibition of cholinergic dysfunction and neuronal apoptosis. Thus, we can conclude that administration of PF to mice prevents the development of LPS-induced AD pathology through the inhibition of neuronal oxidative stress and neuroinflammation, suggesting that PF has a therapeutic potential for AD.
Keywords
Alzheimer's disease; Lipopolysaccharide; Neuroinflammation; Oxidative stress; Paeoniflorin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76: 77-98. doi: 10.1016/j.pneurobio.2005.06.004   DOI
2 Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ (2012) Epidemiology of dementias and Alzheimer's disease. Arch Med Res 43: 600-608. doi: 10.1016/j.arcmed.2012.11.003   DOI
3 Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr Pharm Des 16: 2766-2778. doi: 10.2174/138161210793176572   DOI
4 Lima Giacobbo B, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries E (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56: 3295-3312. doi: 10.1007/s12035-018-1283-6   DOI
5 Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635-700. doi: 10.1146/annurev.biochem.71.110601.135414   DOI
6 Guo J, Lin P, Zhao X, Zhang J, Wei X, Wang Q, Wang C (2014) Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice. Neuroscience 263: 1-14. doi: 10.1016/j.neuroscience.2014.01.008   DOI
7 Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34: 227-234. doi: 10.1007/s10571-013-0006-9   DOI
8 Wang T, Xu L, Gao L, Zhao L, Liu XH, Chang YY, Liu YL (2020) Paeoniflorin attenuates early brain injury through reducing oxidative stress and neuronal apoptosis after subarachnoid hemorrhage in rats. Metab Brain Dis 35: 959-970. doi: 10.1007/s11011-020-00571-w   DOI
9 Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N (2017) The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 142: 215-230. doi: 10.1111/jnc.14042   DOI
10 Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274: 10689-10692. doi: 10.1074/jbc.274.16.10689   DOI
11 Lykhmus O, Mishra N, Koval L, Kalashnyk O, Gergalova G, Uspenska K, Komisarenko S, Soreq H, Skok M (2016) Molecular mechanisms regulating LPS-induced inflammation in the brain. Front Mol Neurosci 9: 19. doi: 10.3389/fnmol.2016.00019   DOI
12 Chen Y, Yang L, Lee TJ (2000) Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-kappaB activation. Biochem Pharmacol 59: 1445-1457. doi: 10.1016/s0006-2952(00)00255-0   DOI
13 Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K (2006) Stage-dependent BDNF serum concentrations in Alzheimer's disease. J Neural Transm Suppl 113: 1217-1224. doi: 10.1007/s00702-005-0397-y   DOI
14 Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron 7: 695-702. doi: 10.1016/0896-6273(91)90273-3   DOI
15 Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91: 267-270. doi: 10.1254/jphs.91.267   DOI
16 Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, Ikejima T (2016) Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res 41: 1662-1672. doi: 10.1007/s11064-016-1881-5   DOI
17 Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208: 1-25. doi: 10.1016/j.expneurol.2007.07.004   DOI
18 Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK (2019) Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 150: 113-137. doi: 10.1111/jnc.14687   DOI
19 Badshah H, Ali T, Kim MO (2016) Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway. Sci Rep 6: 24493. doi: 10.1038/srep24493   DOI
20 Olajide OA, Bhatia HS, de Oliveira AC, Wright CW, Fiebich BL (2013) Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid Based Complement Alternat Med 2013: 459723. doi: 10.1155/2013/459723   DOI
21 Inestrosa NC, Sagal JP, Colombres M (2005) Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem 38: 299-317. doi: 10.1007/0-387-23226-5_15   DOI
22 Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405: 458-462. doi: 10.1038/35013070   DOI
23 Lykhmus O, Gergalova G, Zouridakis M, Tzartos S, Komisarenko S, Skok M (2015) Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction. Int Immunopharmacol 29: 148-151. doi: 10.1016/j.intimp.2015.04.007   DOI
24 Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378-1386. doi: 10.1038/sj.cdd.4401975   DOI
25 Qin L, Liu Y, Hong JS, Crews FT (2013) NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61: 855-868. doi: 10.1002/glia.22479   DOI
26 Ming Z, Wotton CA, Appleton RT, Ching JC, Loewen ME, Sawicki G, Bekar LK (2015) Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-A and acetylcholinesterase activity. J Neuroinflammation 12: 37. doi: 10.1186/s12974-015-0259-y   DOI
27 Kheir-Eldin AA, Motawi TK, Gad MZ, Abd-ElGawad HM (2001) Protective effect of vitamin E, beta-carotene and N-acetylcysteine from the brain oxidative stress induced in rats by lipopolysaccharide. Int J Biochem 33: 475-482. doi: 10.1016/s1357-2725(01)00032-2   DOI
28 Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 70: 165-188. doi: 10.1016/j.ejmech.2013.09.050   DOI
29 Tyagi E, Agrawal R, Nath C, Shukla R (2007) Effect of anti-dementia drugs on LPS induced neuroinflammation in mice. Life Sci 80: 1977-1983. doi: 10.1016/j.lfs.2007.02.039   DOI
30 Ching S, Zhang H, Lai W, Quan N (2006) Peripheral injection of lipopolysaccharide prevents brain recruitment of leukocytes induced by central injection of interleukin-1. Neuroscience 137: 717-726. doi: 10.1016/j.neuroscience.2005.08.087   DOI
31 Sorrenti V, Contarini G, Sut S, Dall'Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M (2018) Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol 9: 183. doi: 10.3389/fphar.2018.00183   DOI
32 Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP (2019) Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 20: 2293. doi: 10.3390/ijms20092293   DOI
33 West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472: 476-480. doi: 10.1038/nature09973   DOI
34 Lan Z, Chen L, Fu Q, Ji W, Wang S, Liang Z, Qu R, Kong L, Ma S (2013) Paeoniflorin attenuates amyloid-beta peptide-induced neurotoxicity by ameliorating oxidative stress and regulating the NGF-mediated signaling in rats. Brain Res 1498: 9-19. doi: 10.1016/j.brainres.2012.12.040   DOI
35 Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. doi: 10.1016/0003-2697(79)90738-3   DOI
36 Schmidt HH, Warner TD, Nakane M, Forstermann U, Murad F (1992) Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol 41: 615-624
37 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. doi: 10.1006/abio.1976.9999   DOI
38 Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453-462. doi: 10.1002/glia.20467   DOI
39 Huang SJ, Wang R, Shi YH, Yang L, Wang ZY, Wang ZT (2012) Primary safety evaluation of sulfated Paeoniae Radix Alba. Yao Xue Xue Bao 47: 486-491
40 Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1: 45-55. doi: 10.3233/jad-1998-1103   DOI
41 Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13: 637-648
42 Zhang HR, Peng JH, Cheng XB, Shi BZ, Zhang MY, Xu RX (2015) Paeoniflorin atttenuates amyloidogenesis and the inflammatory responses in a transgenic mouse model of Alzheimer's disease. Neurochem Res 40: 1583-1592. doi: 10.1007/s11064-015-1632-z   DOI
43 Su YW, Chiou WF, Chao SH, Lee MH, Chen CC, Tsai YC (2011) Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-κB and AP-1 signaling pathways. Int Immunopharmacol 11: 1166-1172. doi: 10.1016/j.intimp.2011.03.014   DOI
44 Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133-146   DOI
45 Abuja PM, Albertini R (2001) Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta 306: 1-17. doi: 10.1016/s0009-8981(01)00393-x   DOI
46 Kaltschmidt C, Kaltschmidt B, Neumann H, Wekerle H, Baeuerle PA (1994) Constitutive NF-kappa B activity in neurons. Mol Cell Biol 14: 3981-3992. doi: 10.1128/mcb.14.6.3981-3992.1994   DOI
47 Hsu PJ, Shou H, Benzinger T, Marcus D, Durbin T, Morris JC, Sheline YI (2015) Amyloid burden in cognitively normal elderly is associated with preferential hippocampal subfield volume loss. J Alzheimer's Dis 45: 27-33. doi: 10.3233/JAD-141743   DOI
48 Menze ET, Esmat A, Tadros MG, Abdel-Naim AB, Khalifa AE (2015) Genistein improves 3-NPA-induced memory impairment in ovariectomized rats: impact of its antioxidant, anti-inflammatory and acetylcholinesterase modulatory properties. PLoS One 10: e0117223. doi: 10.1371/journal.pone.0117223   DOI
49 Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23: 33-44. doi: 10.1111/cns.12588   DOI
50 Yadav UCS (2015) Oxidative stress-induced lipid peroxidation: role in inflammation. Free Radicals in Human Health and Disease 2015: 119-129. doi: 10.1007/978-81-322-2035-0_9   DOI
51 McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer's disease and mild cognitive impairment: a field in its infancy. J Alzheimer's Dis 19: 355-361. doi: 10.3233/JAD-2010-1219   DOI
52 Baatar D, Siddiqi MZ, Im WT, Ul Khaliq N, Hwang SG (2018) Anti-inflammatory effect of ginsenoside rh2-mix on lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Med Food 21: 951-960. doi: 10.1089/jmf.2018.4180   DOI
53 Jin Y, Peng J, Wang X, Zhang D, Wang T (2017) Ameliorative effect of ginsenoside rg1 on lipopolysaccharide-induced cognitive impairment: role of cholinergic system. Neurochem Res 42: 1299-1307. doi: 10.1007/s11064-016-2171-y   DOI
54 Xin Q, Yuan R, Shi W, Zhu Z, Wang Y, Cong W (2019) A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders. Life Sci 237: 116925. doi: 10.1016/j.lfs.2019.116925   DOI
55 Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-κB function in the nervous system. Front Immunol 10: 1043. doi: 10.3389/fimmu.2019.01043   DOI
56 Sun R, Lv LL, Liu GQ (2006) Effects of paeoniflorin on cerebral energy metabolism, nitric oxide and nitric oxide synthase after cerebral ischemia in mongoliagerbils. Zhongguo Zhong Yao Za Zhi 31: 832-835
57 Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130: 184-208. doi: 10.1006/jsbi.2000.4274   DOI
58 Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology 45: 1594-1601. doi: 10.1212/wnl.45.8.1594   DOI
59 Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. Neurobiol Aging 19: 33-36. doi: 10.1016/s0197-4580(98)00009-8   DOI
60 Dorheim MA, Tracey WR, Pollock JS, Grammas P (1994) Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer's disease. Biochem Biophys Res Commun 205: 659-665. doi: 10.1006/bbrc.1994.2716   DOI
61 Kim ID, Ha BJ (2010) The effects of paeoniflorin on LPS-induced liver inflammatory reactions. Arch Pharm Res 33: 959-966. doi: 10.1007/s12272-010-0620-8   DOI
62 Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med 13: 1359-1362. doi: 10.1038/nm1653   DOI