Activity and Isozyme Profile of Antioxidative Enzymes at Booting Stage of Rice Treated with Cold Water

  • Kim Ki-Young (Honam Agricultural Research Institute, NICS, RDA) ;
  • Kim Bo-Kyeong (Honam Agricultural Research Institute, NICS, RDA) ;
  • Shin Mun-Sik (Honam Agricultural Research Institute, NICS, RDA) ;
  • Choung Jin-Il (Honam Agricultural Research Institute, NICS, RDA) ;
  • Ko Jae-Kweon (Honam Agricultural Research Institute, NICS, RDA) ;
  • Kim Jung-Kon (Honam Agricultural Research Institute, NICS, RDA) ;
  • Lim Jung-Hyun (Faculty of biological Resources, and Institute for Agricultural Science and Technology, Chonbuk National University) ;
  • Yun Song-Joon (Faculty of biological Resources, and Institute for Agricultural Science and Technology, Chonbuk National University)
  • Published : 2004.09.01

Abstract

This study was carried out to investigate the antioxidative enzymes and isozymes between chilling-tolerant and -susceptible varieties at the booting stage under cold water stress $(13^{\circ}C)$ in japonica rice. Total SOD, CAT, POX, and GR activities on the basis of protein were found to be important factors to defend cold water stress. Especially, SOD and CAT activities showed distinctive differences between chilling-tolerant and -susceptible varieties. Chilling-tolerant varieties were higher than chilling-susceptible varieties for SOD and CAT activities. One of eight isozyme bands for SOD was a inducible isoform. Three isozymes for CAT and one isozyme for POX were closely correlated with defense to cold water stress. Total GR activities except Stejaree 45 on the basis fresh weight and POX were increased by cold water stress, but there was no difference between chilling-tolerant and -sus­ceptible varieties.

Keywords

References

  1. Alscher, R G and Hess J L 1993 Antioxidants in higher plants CRC Press, Boca Raton pp. 1-174
  2. Anderson, M. D., T. K. Prasad, and C R. Stewart 1995 Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase druing acclimation to chilling in mesocotyls of maize seedlings Plant Physiol.109 1247-1257 https://doi.org/10.1104/pp.109.4.1247
  3. Baum, J. A and J G. Scandalios 1979 Developmental expression and intracellular localization of superoxide dismutases in maize. Differentiation 13.133-140 https://doi.org/10.1111/j.1432-0436.1979.tb01576.x
  4. Baum, J. A and J. G. Scandalios 1982. Multiple genes controlling superoxide dismutase expression in maize J Hered. 73 : 95-100
  5. Beers, R. F. and I W Sizer. 1952 A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biolochem 195: 133-140
  6. Blokhina, O, E. Virolainen, and K. V. Fagerstedt 2003 Antioxidants, oxidative damage and oxygen deprivation stress Annals of Botany 91 . 179-194 https://doi.org/10.1093/aob/mcf118
  7. Bradford, M M 1976 A rapid and sensitive method for the quantitation of microgram quantities of protem utilizing the principie of protein-dye binding Anal. Biochem 72 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  8. Chance, B and A C Maehly. 1955. Assay of catalase and peroxidases. Methods Enzymol. 2 764-775 https://doi.org/10.1016/S0076-6879(55)02300-8
  9. Doulis, A G., N. Debian, A H Kingston-Smith, and C H Foyer 1997 Differential locolization of antioxidants in maize leaves Plant Physiol. 114 1031-1037 https://doi.org/10.1104/pp.114.3.1031
  10. Fryer, M. J., J. R. Andrews, K. Oxborough, D. A Blowers, and N. R. Baker. 1998 Relationships between $CO_2$ assimilation, photosynthetic electron transport and active $O_2$ metabolism in leaves of maize in the field during periods of low temperature Plant Physiol. 116 . 571-580 https://doi.org/10.1104/pp.116.2.571
  11. Gupta, A S, R. P. Webb, A. S Holaday, and R. D. Allen. 1993. Overexpression of superoxide dismutase protects plants from oxidative stress. Induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants Plant Physiol 103 1067-1073 https://doi.org/10.1104/pp.103.4.1067
  12. Hiraga, S, K Sasaki, H Ito, Y. Ohashi, and H Matsui 2001 A large family of class plant peroxidases. Plant Cell Physiol 42 462-468 https://doi.org/10.1093/pcp/pce061
  13. Jimenez, A., J A Hernandez, G. Pastori, L A del Rio, and F. Sevilla 1998 Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves Plant Physiol. 118 . 1327-1335 https://doi.org/10.1104/pp.118.4.1327
  14. Kawano, T 2003 Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21 . 829-837
  15. Kuk, Y I ,J S Shin, T E. Whang, and J O Guh 2002 Mechanisms of chilling tolerance in relation to antioxidative enzymes in rice Korean J Crop Sci. 47(5) . 341-351
  16. May, M J, T. Vernoux, C Leaver, M Van Montagu, and D. Inze 1998 Glutathione homeostasis in plants. implications for environmental sensing and plant development Journal of Experimental Botany 49.649-667 https://doi.org/10.1093/jexbot/49.321.649
  17. Mckersie, B D., S R Bowley, and K S Jones 1999. Winter survival of transgenic alfalfa overexpressing superoxide dismutase. Plant physiol. 119 . 839-848 https://doi.org/10.1104/pp.119.3.839
  18. Mckersie, B. D, Y Chen, M. Beus, S R Bowley, C. Bowler, D. Inze, K. D'Hallum, and J. Botterman. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic Alfalfa(Medicago sativa L ). Plant physiol 103: 1155-1163 https://doi.org/10.1104/pp.103.4.1155
  19. Noctor, G. and C. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. BioI. 49: 249-279 https://doi.org/10.1146/annurev.arplant.49.1.249
  20. Oberley, L. W. and D. R. Spitz. 1984. Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 105: 457-464 https://doi.org/10.1016/S0076-6879(84)05064-3
  21. O'Kane, D., V. Gill, P.Boyd, and R. Burdon. 1996. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana calluus. Planta 198 : 371-377 https://doi.org/10.1007/BF00620053
  22. Prasad, T. K. 1997. Role of catalase in inducing chilling tolerance in preemergent maize seedlings. Plant Physiol. 114 : 1319-1376
  23. Rao, M. V., G. Paliyath, and D. P. Ormrod. 1996. Ultraviolet-Band ozone-induced biochemical change in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 110 : 125-136 https://doi.org/10.1104/pp.110.1.125
  24. Rennenberg, H. 1982. Glutathione metabolism and possible biological riles in higher plants. Phytochemistry 21 : 2771-2781 https://doi.org/10.1016/0031-9422(80)85045-X
  25. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and tolerant cultivars of rice(Oryza sativa L.). Plant Physiol. 110 : 125-136 https://doi.org/10.1104/pp.110.1.125
  26. Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101 : 7-12 https://doi.org/10.1104/pp.101.1.7
  27. Spychalla, J. P. and S. L. Desborough. 1990. Superoxide dismutase, catalase, and a-tocopherol content of stored potato tuber. Plant Physiol. 94 : 1214-1218 https://doi.org/10.1104/pp.94.3.1214
  28. Steponkus, P. L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35 : 543-584 https://doi.org/10.1146/annurev.pp.35.060184.002551
  29. Takahashi, M. A. and K. Asada. 1983. Superoxide anion permeability of phospholipid membranes and chloroplast tylakoids. Archives of Biochemistry and Biophysics 226: 558-566 https://doi.org/10.1016/0003-9861(83)90325-9
  30. Thomashow, M. F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. BioI. 50 : 571-599 https://doi.org/10.1146/annurev.arplant.50.1.571
  31. Willekens, H., D. Inze, and C. W. Van. 1995. Catalase in plants. Molecular Breeding 1 : 207-208 https://doi.org/10.1007/BF02277422
  32. Woodbury, W., A. K. Spencer, and M. A. Stahmann. 1971. An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44: 301-305 https://doi.org/10.1016/0003-2697(71)90375-7
  33. Xiong, L., S. K. S. Schumaker, and J. K. Zhu. 2002. Cell signaling during cold, drought, and salt stress. The plant cell 165-183
  34. Yun, S. J. and W .C. Lee. 1994. Characteristics of superoxide dismutases of mulberry leaf. Kor. J. Breed. 26: 389-393