• 제목/요약/키워드: stress-inducible

Search Result 281, Processing Time 0.031 seconds

Expression of Arabidopsis thaliana SIK (Stress Inducible Kinase) Gene in a Potato Cultivar (Solanum tuberosum L. 'Taedong Valley')

  • Yoon Jung-Ha;Fang Yi-Lan;Park Eung-Jun;Kim Hye-Jin;Na Yun-Jeong;Lee Dong-Hee;Yang Deok-Chun;Lim Hak-Tae
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2005
  • Osmotic stress is one of major limiting factors in crop production. In particular, seasonal drought often causes the secondary disease in the field, resulting in severe reduction in both quality and productivity. Recent efforts have revealed that many genes encoding protein kinases play important roles in osmotic stress signal transduction pathways. Previously, the AtSIK (Arabidopsis thaliana Stress Inducible Kinase) mutants have shown to enhance tolerance to abiotic stresses, accompanying with higher expression of abiotic stress-related genes than did the wild-type plants. In this study, we have transformed potato (cv. Taedong Valley) with the AtSIK expression cassette. Both PCR and RT-PCR using AtSIK-specific primers showed stable integration and expression of the AtSIK gene in individual transgenic lines, respectively. Foliar application of herbicide ($Basta^{(R)}$) at commercial application rate (0.3% (v/v)) revealed another evidence of stable gene introduction of T-DNA which includes the bar gene for herbicide resistance. Overexpression of the AtSIK gene under dual CaMV35S promoter increased sensitivity to salt stress (300 mM NaCl), which was demonstrated by the reduction rate of chlorophyll contents in leaves of transgenic potato lines. These results suggest that possible increase of osmotic tolerance in potato plants may be achieved by antisense expression of AtSIK gene.

  • PDF

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.

Characterization of a Cadmium-resistant Yeast Strain in Response to Cadmium or Heat Shock Stress

  • Huh, Nam-Eung;Choi, Nack-Shick;Seo, Young-Kyo;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 1994
  • A varient strain of budding yeast, Hansenula anomala B-7 which had been identified to be highly resistant to cadmium ions, were observed by transmission electron microscopy. It was shown that the cells accumulated excess amounts of cadmium ions throughout inside the cell rather than on the cell surface. The cell growth in response to cadmium or heat shock stress has also been investigated. It was observed that the cells precultured in the presence of 500 $\mu$ g/ml of Cd ions grew slower than those precultured at 1, 000 $\mu$ g/ml of the metal ions, when they were cultivated in the media containing 1, 000 $\mu$g/ml of the metal ions. Heat shock, however, stimulated the cell growth transiently, when the cells were allowed to grow in the presence of 1, 000 $\mu$g/ml of the metal ions. But the cells given heat shock for more than 100 min received permanent damage to growth. Effects of both stresses on budding rate was also examined. It revealed that the stresses did not change the budding ratio much, which was contradictory to that observed from the same budding yeast, Saccharomyces cerevisiae. Furthermore, the cells treated with 1, 000 $\mu$g/ml of the metal ions not only induced, but also switched off the expression of several new proteins. Some of the cadmium stress-inducible proteins were estimated to be also induced by heat shock stress.

  • PDF

THE ESSENTIAL ROLE OF PHOSPHATIDYLINOSITOL 3-KINASE IN THE INDUCTION OF MICROSOMAL EPOXIDE HYDROLASE

  • Kang, Keon-Wook;Ryu, Ji-Hwa;Kim, Sang-Geon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.140-140
    • /
    • 2001
  • We have shown that PI3-kinase played an essential role in the ARE-mediated rGSTA2 induction by oxidative stress following sulfur amino acid deprivation (SAAD) (Kang et al., Mol. Pharmacol., 2000). Microsomal epoxide hydrolase (mEH), which detoxifies a variety of epoxide intermediates produced from various xenobiotics, is inducible by oxidative stress.(omitted)

  • PDF

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

Functional Role of a Conserved Sequence Motif in the Oxygen-dependent Degradation Domain of Hypoxia-inducible Factor 1α in the Recognition of p53

  • Chi, Seung-Wook
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.72-76
    • /
    • 2008
  • Hypoxia-inducible factor $1{\alpha}\;(HIF1{\alpha})$ is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ is responsible for the negative regulation of $HIF1{\alpha}$ in normoxia. The interactions of the $HIF1{\alpha}$ ODD domain with partner proteins such as von Hippel-Lindau tumor suppressor (pVHL) and p53 are mediated by two sequence motifs, the N- and C-terminal ODD(NODD and CODD). Multiple sequence alignment with $HIF1{\alpha}$ homologs from human, monkey, pig, rat, mouse, chicken, frog, and zebrafish has demonstrated that the NODD and CODD motifs have noticeably high conservation of the primary sequence across different species and isoforms. In this study, we carried out molecular dynamics simulation of the structure of the $HIF1{\alpha}$ CODD motif in complex with the p53 DNA-binding domain (DBD). The structure reveals specific functional roles of highly conserved residues in the CODD sequence motif of $HIF1{\alpha}$ for the recognition of p53.

Backbone Resonance Assignment of a Proteolysis-Resistant Fragment in the Oxygen-Dependent Degradation Domain of the Hypoxia Inducible Factor 1α

  • Kim, Do-Hyoung;Lee, Si-Hyung;Chi, Seung-Wook;Nam, Ki Hoon;Han, Kyou-Hoon
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.493-496
    • /
    • 2009
  • Hypoxia-inducible factor $1{\alpha}$ ($HIF1{\alpha}$) is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ responsible for the negative regulation of $HIF1{\alpha}$ in normoxia is intrinsically unfolded. Here, we carried out the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignment of a proteolysis-resistant fragment (residues 404-477) in the $HIF1{\alpha}$ ODD domain using NMR spectroscopy. About 98% (344/352) of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were unambiguously assigned. The results will be useful for further investigation of the structural and dynamic states of the $HIF1{\alpha}$ ODD domain and its interaction with binding partners.

Up-regulation of Early Growth Response-1 Expression by Endoplasmic Reticulum Stress

  • Han, Song-Yi;Kwon, Ki-Sang;Yun, Eun-Young;Goo, Tae-Won;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.13 no.2
    • /
    • pp.157-160
    • /
    • 2007
  • Endoplasmic reticulum (ER) plays formation of disulfide bonds and proper folding of secretory proteins. Cellular responses to ER stress enhances the stress-activated kinase pathway and the induces a lot of immediate-early genes. Among of them, the early growth response-1 (Egr-1), a transcription factor, which plays an important role in cell growth, development, differentiation, apoptosis and various types of injury. For that reason, we have tested the expression of Egr-1 against ER stress inducible drugs (tunicamycin, DTT, A23187 and BFA) to understand what kind of aspect occurred by ER stresses.

  • PDF