DOI QR코드

DOI QR Code

Functional Role of a Conserved Sequence Motif in the Oxygen-dependent Degradation Domain of Hypoxia-inducible Factor 1α in the Recognition of p53

  • Chi, Seung-Wook (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2008.06.30

Abstract

Hypoxia-inducible factor $1{\alpha}\;(HIF1{\alpha})$ is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ is responsible for the negative regulation of $HIF1{\alpha}$ in normoxia. The interactions of the $HIF1{\alpha}$ ODD domain with partner proteins such as von Hippel-Lindau tumor suppressor (pVHL) and p53 are mediated by two sequence motifs, the N- and C-terminal ODD(NODD and CODD). Multiple sequence alignment with $HIF1{\alpha}$ homologs from human, monkey, pig, rat, mouse, chicken, frog, and zebrafish has demonstrated that the NODD and CODD motifs have noticeably high conservation of the primary sequence across different species and isoforms. In this study, we carried out molecular dynamics simulation of the structure of the $HIF1{\alpha}$ CODD motif in complex with the p53 DNA-binding domain (DBD). The structure reveals specific functional roles of highly conserved residues in the CODD sequence motif of $HIF1{\alpha}$ for the recognition of p53.

Keywords

References

  1. Bruick, R.K., and McKnight, S.L. (2002). Transcription. Oxygen sensing gets a second wind. Science 295, 807-808. https://doi.org/10.1126/science.1069825
  2. Fels, D.R., and Koumenis, C. (2005). $HIF-1{\alpha}$ and p53: the ODD couple? Trends Biochem. Sci. 30, 426-429. https://doi.org/10.1016/j.tibs.2005.06.009
  3. Hansson, L.O., Friedler, A., Freund, S., Rudiger, S., and Fersht, A.R. (2002). Two sequence motifs from $HIF-1{\alpha}$ bind to the DNA-binding site of p53. Proc. Natl. Acad. Sci. USA. 99, 10305-10309. https://doi.org/10.1073/pnas.122347199
  4. Hara, S., Hamada, J., Kobayashi, C., Kondo, Y., and Imura, N. (2001). Expression and characterization of hypoxia-inducible factor $(HIF)-3{\alpha}$ in human kidney: suppression of HIF-mediated gene expression by $HIF-3{\alpha}$. Biochem. Biophys. Res. Commun. 287, 808-813. https://doi.org/10.1006/bbrc.2001.5659
  5. Hon, W.C., Wilson, M.I., Harlos, K., Claridge, T.D., Schofield, C.J., Pugh, C.W., Maxwell, P.H., Ratcliffe, P.J., Stuart, D.I., and Jones, E.Y. (2002). Structural basis for the recognition of hydroxyproline in $HIF-1{\alpha}$ by pVHL. Nature 417, 975-978. https://doi.org/10.1038/nature00767
  6. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). $HIF-1{\alpha}$ targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468. https://doi.org/10.1126/science.1059817
  7. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Targeting of $HIF1{\alpha}$ to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472. https://doi.org/10.1126/science.1059796
  8. Jeffrey, P.D., Gorina, S., and Pavletich, N.P. (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498-1502. https://doi.org/10.1126/science.7878469
  9. Jeong, J.W., Bae, M.K., Ahn, M.Y., Kim, S.H., Sohn, T.K., Bae, M.H., Yoo, M.A., Song, E.J., Lee, K.J., and Kim, K.W. (2002). Regulation and destabilization of $HIF-1{\alpha}$ by ARD1-mediated acetylation. Cell 111, 709-720. https://doi.org/10.1016/S0092-8674(02)01085-1
  10. Jiang, B.H., Rue, E., Wang, G.L., Roe, R., and Semenza, G.L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771-17778. https://doi.org/10.1074/jbc.271.30.17771
  11. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., and Whitelaw, M.L. (2002). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858-861. https://doi.org/10.1126/science.1068592
  12. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  13. Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H., and Kim, K.W. (2004). Hypoxia-inducible factor $(HIF-1){\alpha}$: its protein stability and biological functions. Exp. Mol. Med. 36, 1-12. https://doi.org/10.1038/emm.2004.1
  14. Min, J.H., Yang, H., Ivan, M., Gertler, F., Kaelin, W.G., Jr., and Pavletich, N.P. (2002). Structure of an $HIF-1{\alpha}-pVHL$ complex: hydroxyproline recognition in signaling. Science 296, 1886-1889. https://doi.org/10.1126/science.1073440
  15. Sanchez-Puig, N., Veprintsev, D.B., and Fersht, A.R. (2005). Binding of natively unfolded $HIF-1{\alpha}$ ODD domain to p53. Mol. Cell. 17, 11-21. https://doi.org/10.1016/j.molcel.2004.11.019
  16. Schofield, C.J. and Ratcliffe, P.J. (2004). Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell. Biol. 5, 343-354. https://doi.org/10.1038/nrm1366
  17. Semenza, G.L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell. Dev. Biol. 15, 551-578. https://doi.org/10.1146/annurev.cellbio.15.1.551
  18. Semenza, G.L. (2001). HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 107, 1-3. https://doi.org/10.1016/S0092-8674(01)00518-9
  19. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3, 721-732. https://doi.org/10.1038/nrc1187
  20. Wang, Y., Rosengarth, A., and Luecke, H. (2007). Structure of the human p53 core domain in the absence of DNA. Acta. Crystallogr. D. Biol. Crystallogr. 63, 276-281. https://doi.org/10.1107/S0907444906048499