Browse > Article
http://dx.doi.org/10.5808/GI.2008.6.2.072

Functional Role of a Conserved Sequence Motif in the Oxygen-dependent Degradation Domain of Hypoxia-inducible Factor 1α in the Recognition of p53  

Chi, Seung-Wook (Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
Hypoxia-inducible factor $1{\alpha}\;(HIF1{\alpha})$ is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ is responsible for the negative regulation of $HIF1{\alpha}$ in normoxia. The interactions of the $HIF1{\alpha}$ ODD domain with partner proteins such as von Hippel-Lindau tumor suppressor (pVHL) and p53 are mediated by two sequence motifs, the N- and C-terminal ODD(NODD and CODD). Multiple sequence alignment with $HIF1{\alpha}$ homologs from human, monkey, pig, rat, mouse, chicken, frog, and zebrafish has demonstrated that the NODD and CODD motifs have noticeably high conservation of the primary sequence across different species and isoforms. In this study, we carried out molecular dynamics simulation of the structure of the $HIF1{\alpha}$ CODD motif in complex with the p53 DNA-binding domain (DBD). The structure reveals specific functional roles of highly conserved residues in the CODD sequence motif of $HIF1{\alpha}$ for the recognition of p53.
Keywords
hypoxia-inducible factor; molecular dynamics simulation; oxygen-dependent degradation domain; p53; sequence motif;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fels, D.R., and Koumenis, C. (2005). $HIF-1{\alpha}$ and p53: the ODD couple? Trends Biochem. Sci. 30, 426-429.   DOI   ScienceOn
2 Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Targeting of $HIF1{\alpha}$ to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472.   DOI   ScienceOn
3 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.   DOI   ScienceOn
4 Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3, 721-732.   DOI   ScienceOn
5 Sanchez-Puig, N., Veprintsev, D.B., and Fersht, A.R. (2005). Binding of natively unfolded $HIF-1{\alpha}$ ODD domain to p53. Mol. Cell. 17, 11-21.   DOI   ScienceOn
6 Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., and Whitelaw, M.L. (2002). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858-861.   DOI   ScienceOn
7 Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H., and Kim, K.W. (2004). Hypoxia-inducible factor $(HIF-1){\alpha}$: its protein stability and biological functions. Exp. Mol. Med. 36, 1-12.   DOI   ScienceOn
8 Jeong, J.W., Bae, M.K., Ahn, M.Y., Kim, S.H., Sohn, T.K., Bae, M.H., Yoo, M.A., Song, E.J., Lee, K.J., and Kim, K.W. (2002). Regulation and destabilization of $HIF-1{\alpha}$ by ARD1-mediated acetylation. Cell 111, 709-720.   DOI   ScienceOn
9 Jeffrey, P.D., Gorina, S., and Pavletich, N.P. (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498-1502.   DOI   ScienceOn
10 Jiang, B.H., Rue, E., Wang, G.L., Roe, R., and Semenza, G.L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771-17778.   DOI   ScienceOn
11 Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). $HIF-1{\alpha}$ targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468.   DOI   ScienceOn
12 Hara, S., Hamada, J., Kobayashi, C., Kondo, Y., and Imura, N. (2001). Expression and characterization of hypoxia-inducible factor $(HIF)-3{\alpha}$ in human kidney: suppression of HIF-mediated gene expression by $HIF-3{\alpha}$. Biochem. Biophys. Res. Commun. 287, 808-813.   DOI   ScienceOn
13 Hon, W.C., Wilson, M.I., Harlos, K., Claridge, T.D., Schofield, C.J., Pugh, C.W., Maxwell, P.H., Ratcliffe, P.J., Stuart, D.I., and Jones, E.Y. (2002). Structural basis for the recognition of hydroxyproline in $HIF-1{\alpha}$ by pVHL. Nature 417, 975-978.   DOI   ScienceOn
14 Wang, Y., Rosengarth, A., and Luecke, H. (2007). Structure of the human p53 core domain in the absence of DNA. Acta. Crystallogr. D. Biol. Crystallogr. 63, 276-281.   DOI   ScienceOn
15 Semenza, G.L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell. Dev. Biol. 15, 551-578.   DOI   ScienceOn
16 Hansson, L.O., Friedler, A., Freund, S., Rudiger, S., and Fersht, A.R. (2002). Two sequence motifs from $HIF-1{\alpha}$ bind to the DNA-binding site of p53. Proc. Natl. Acad. Sci. USA. 99, 10305-10309.   DOI   ScienceOn
17 Bruick, R.K., and McKnight, S.L. (2002). Transcription. Oxygen sensing gets a second wind. Science 295, 807-808.   DOI   ScienceOn
18 Schofield, C.J. and Ratcliffe, P.J. (2004). Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell. Biol. 5, 343-354.   DOI   ScienceOn
19 Semenza, G.L. (2001). HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 107, 1-3.   DOI   ScienceOn
20 Min, J.H., Yang, H., Ivan, M., Gertler, F., Kaelin, W.G., Jr., and Pavletich, N.P. (2002). Structure of an $HIF-1{\alpha}-pVHL$ complex: hydroxyproline recognition in signaling. Science 296, 1886-1889.   DOI   ScienceOn