DOI QR코드

DOI QR Code

Backbone Resonance Assignment of a Proteolysis-Resistant Fragment in the Oxygen-Dependent Degradation Domain of the Hypoxia Inducible Factor 1α

  • Kim, Do-Hyoung (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Si-Hyung (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chi, Seung-Wook (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Nam, Ki Hoon (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Han, Kyou-Hoon (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2008.12.01
  • Accepted : 2009.02.26
  • Published : 2009.04.30

Abstract

Hypoxia-inducible factor $1{\alpha}$ ($HIF1{\alpha}$) is a transcription factor that plays a key role in the adaptation of cells to low oxygen stress and oxygen homeostasis. The oxygen-dependent degradation (ODD) domain of $HIF1{\alpha}$ responsible for the negative regulation of $HIF1{\alpha}$ in normoxia is intrinsically unfolded. Here, we carried out the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignment of a proteolysis-resistant fragment (residues 404-477) in the $HIF1{\alpha}$ ODD domain using NMR spectroscopy. About 98% (344/352) of all the $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$, and $^{13}CO$ resonances were unambiguously assigned. The results will be useful for further investigation of the structural and dynamic states of the $HIF1{\alpha}$ ODD domain and its interaction with binding partners.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Korean Ministry of Science and Technology

References

  1. Bax, A., and Grzesiek, S. (1993). Methodological advances in protein NMR. In NMR of Proteins, G.M. Clore, and A.M., Gronenborn, eds. (London, UK: The MacMillan Press), pp. 33-52
  2. Bienkiewicz, E.A., Adkins, J.N., and Lumb, K.J. (2002). Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41, 752-759 https://doi.org/10.1021/bi015763t
  3. Bruick, R.K., and McKnight, S.L. (2002). Transcription. Oxygen sensing gets a second wind. Science 295, 807-808 https://doi.org/10.1126/science.1069825
  4. Chi, S.W., Lee, S.H., Kim, D.H., Ahn, M.J., Kim, J.S., Woo, J.Y., Torizawa, T., Kainosho, M., and Han, K.H. (2005). Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802 https://doi.org/10.1074/jbc.M508578200
  5. Chi, S.W., Kim, D.H., Lee, S.H., Chang, I., and Han, K.H. (2007). Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci. 16, 2108-2117 https://doi.org/10.1110/ps.072983507
  6. Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M.F., Guittet, E., and van Heijenoort, C. (2004). Coupling of folding and binding of thymosin beta4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J. Biol. Chem. 279, 23637-23645 https://doi.org/10.1074/jbc.M311413200
  7. Hansson, L.O., Friedler, A., Freund, S., Rudiger, S., and Fersht, A. R. (2005). Proc. Natl. Acad. Sci. USA 99, 10305-10309 https://doi.org/10.1073/pnas.122347199
  8. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G. Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468 https://doi.org/10.1126/science.1059817
  9. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472 https://doi.org/10.1126/science.1059796
  10. Jeong, J.W., Bae, M.K., Ahn, M.Y., Kim, S.H., Sohn, T.K., Bae, M.H., Yoo, M.A., Song, E.J., Lee, K.J., and Kim, K.W. (2002). Regulation and destabilization of HIF-1 alpha by ARD1-mediated acetylation. Cell 111, 709-720 https://doi.org/10.1016/S0092-8674(02)01085-1
  11. Jiang, B.H., Rue, E., Wang, G.L., Roe, R., and Semenza, G.L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771-17778 https://doi.org/10.1074/jbc.271.30.17771
  12. Kim, D.H., Ni, Y., Lee, S.H., Urban, S., and Han, K.H. (2008). An anti-viral peptide derived from the preS1 surface protein of hepatitis B virus. BMB Rep. 41 640-644 https://doi.org/10.5483/BMBRep.2008.41.9.640
  13. Lee, H., Mok, K.H., Muhandiram, R., Park, K.H., Suk, J.E., Kim, D.H., Chang, J., Sung, Y.C., Choi, K.Y., and Han, K.H. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275 29426-29432 https://doi.org/10.1074/jbc.M003107200
  14. Parker, D., Rivera, M., Zor, T., Henrion-Caude, A., Radhakrishnan, I., Kumar, A., Shapiro, L.H., Wright, P.E., Montminy, M., and Brindle, P.K. (1999). Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601-5607 https://doi.org/10.1128/MCB.19.8.5601
  15. Ramelot, T.A., Gentile, L.N., and Nicholson, L.K. (2000). Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725 https://doi.org/10.1021/bi992580m
  16. Sanchez-Puig, N., Veprintsev, D.B., and Fersht, A.R. (2005). Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol. Cell 17, 11-21 https://doi.org/10.1016/j.molcel.2004.11.019
  17. Sayers, E.W., Gerstner, R.B., Draper, D.E., and Torchia, D.A. (2000). Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39, 13602-13613 https://doi.org/10.1021/bi0013391
  18. Schofield, C.J., and Ratcliffe, P.J. (2004). Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343-354 https://doi.org/10.1038/nrm1366
  19. Schwarzinger, S., Kroon, G.J., Foss, T.R., Chung, J., Wright, P.E., and Dyson, H.J. (2001). Sequence-dependent correction of random coil NMR chemical shifts. J. Am. Chem. Soc. 123, 2970-2978 https://doi.org/10.1021/ja003760i
  20. Semenza, G.L. (2001). HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1-3 https://doi.org/10.1016/S0092-8674(01)00518-9
  21. Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732 https://doi.org/10.1038/nrc1187
  22. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L., and Sykes, B.D. (1995). 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135-140
  23. Zitzewitz, J.A., Ibarra-Molero, B., Fishel, D.R., Terry, K.L., and Matthews, C.R. (2000). Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105-1116 https://doi.org/10.1006/jmbi.2000.3507

Cited by

  1. Structural characterization of an intrinsically unfolded mini-HBX protein from hepatitis B virus vol.34, pp.2, 2009, https://doi.org/10.1007/s10059-012-0060-z
  2. BMSC-Exosomes Carry Mutant HIF-1α for Improving Angiogenesis and Osteogenesis in Critical-Sized Calvarial Defects vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.565561