• Title/Summary/Keyword: stress models

Search Result 2,402, Processing Time 0.034 seconds

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.2
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

Development of a Method of Cybersickness Evaluation with the Use of 128-Channel Electroencephalography (128 채널 뇌파를 이용한 사이버멀미 평가법 개발)

  • Han, Dong-Uk;Lee, Dong-Hyun;Ji, Kyoung-Ha;Ahn, Bong-Yeong;Lim, Hyun-Kyoon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.3-20
    • /
    • 2019
  • With advancements in technology of virtual reality, it is used for various purposes in many fields such as medical care and healthcare, but as the same time there are also increasing reports of nausea, eye fatigue, dizziness, and headache from users. These symptoms of motion sickness are referred to as cybersickness, and various researches are under way to solve the cybersickness problem because it can cause inconvenience to the user and cause adverse effects such as discomfort or stress. However, there is no official standard for the causes and solutions of cybersickness at present. This is also related to the absence of tools to quantitatively measure the cybersickness. In order to overcome these limitations, this study proposed quantitative and objective cybersickness evaluation method. We measured 128-channel EEG waves from ten participants experiencing visually stimulated virtual reality. We calculated the relative power of delta and alpha in 11 regions (left, middle, right frontal, parietal, occipital and left, right temporal lobe). Multiple regression models were obtained in a stepwise manner with the motion sickness susceptibility questionnaire (MSSQ) scores indicating the susceptibility of the subject to the motion sickness. A multiple regression model with the highest under the area ROC curve (AUC) was derived. In the multiple regression model derived from this study, it was possible to distinguish cybersickness by accuracy of 95.1% with 11 explanatory variables (PD.MF, PD.LP, PD.MP, PD.RP, PD.MO, PA.LF, PA.MF, PA.RF, PA.LP, PA.RP, PA.MO). In summary, in this study, objective response to cybersickness was confirmed through 128 channels of EEG. The analysis results showed that there was a clearly distinguished reaction at a specific part of the brain. Using the results and analytical methods of this study, it is expected that it will be useful for the future studies related to the cybersickness.

Biomechanical Efficacy of a Combined Flexible Cage with Pedicle Screws with Spring rods: A Finite Element Analysis (Spring rod를 사용한 척추경 나사못과 동반 시술된 Flexible cage의 생체역학적 효과)

  • Kim, Y.H.;Park, E.Y.;Kim, W.H.;Hwang, S.P.;Park, K.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Recently, flexible cages have been introduced in an attempt to absorb and reduce the abnormal load transfer along the anterior parts of the spine. They are designed to be used with the pedicle screw systems to allow some mobility at the index level while containing ROM at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the flexible cage when combined with pedicle screws with flexible rods. The post-operated models were constructed by modifying the L4-5 of a previously-validated 3-D FE model of the intact lumbar spine (L2-S1): (1) Type 1, flexible cage only; (2) Type 2, pedicle screws with flexible rods; (3) Type 3, interbody fusion cage plus pedicle screws with rigid rods; (4) Type 4, interbody fusion cage plus Type 2; (5) Type 5, Type 1 plus Type 2. Flexion/extension of 10 Nm with a compressive follower load of 400N was applied. As compared to the Type 3 (62~65%) and Type 4 (59~62%), Type 5 (53~55%) was able to limit the motion at the operated level effectively, despite moderate reduction at the adjacent level. It was also able to shift the load back to the anterior portions of the spine thus relieving excessively high posterior load transfer and to reduce stress on the endplate by absorbing the load with its flexible shape design features. The likelihood of component failure of flexble cage remained less than 30% regardless of loading conditions when combined with pedicle screws with flexible rods. Our study demonstrated that flexible cages when combined with posterior dynamic system may help reduce subsidence of cage and degeneration process at the adjacent levels while effectively providing stability at the operated level.

The Effects of Active Coping Strategy on Subjective Happiness in College Student: Mediated Effect of Academic Resilience (대학생의 적극적 대처방식이 주관적 행복감에 미치는 영향: 학업탄력성의 매개효과)

  • Kwon, Jae-Hwan;Lee, Yun-Ji
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.104-116
    • /
    • 2017
  • This study was conducted in order to test a model in relation to active coping strategy, academic resilience, and subjective happiness in college students. Also, sought to test the mediating effects of academic resilience in the relationship between active coping strategy and subjective happiness. Data was collected through a self-report questionnaire which was administered to 400 college students. Correlational analysis and structure equation modeling analysis were conducted to test the research models. The results were as follows: First, as the level of active coping strategy increased, the level of academic resilience and subjective happiness increased. Second, as the level of academic resilience increased, the level of subjective happiness increased. Third, the model with active coping strategy as a prophetic variable, academic resilience as a mediating variable, and subjective happiness as a result variable showed a full mediating effect. Thus, although active coping strategy has no direct influence on subjective happiness, it has an indirect effect on subjective happiness by enhancing academic resilience. The results of this study are expected to provide basic data on research and education for the improvement of happiness in college students and to help them develop educational counseling and training programs for improving their happiness and adapting to college life.

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

Molecular Theory of Superplastic Deformation (초소성변형의 분자론)

  • Chang Hong Kim;Taikyue Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.217-236
    • /
    • 1979
  • The author's theory for plastic deformation was applied to superplastic alloys (Zn-Al eutectoid, Al-Cu, Pb-Sn, Sn-Bi, Mg-Al eutectics). The plastic deformation of the superplastic alloys could be described by two Maxwell models connected in parallel which represent two grain boundary flow units. The flow units are characterized by the two parameters $X_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gj}$ (j=l or 2, g signifies the grain boundary) the values of which were obtained by applying our flow equation [Eq. (5)] to experiment. We confirmed that our flow equation describes the superplasticity very well. The curve of strain rate sensitivity m (=${\partial}\;In\;f/{\partial}\;In\;\dot{s})\;vs.\;-In\dot{s}$, where f and s are stress and strain rate, respectively, showed two peaks corresponding to flow unit gl and g2, the separation of the two peaks is determined by the difference between ${\beta}_{g1}\;and\;{\beta}_{g2}$. The condition of superplasticity is also determined by ${\beta}_{gj}$, which satisfies $\dot{s}_{mj}{\leqslant}1.53}{\beta}_{gj}$ [Eq.(13)], where $\dot{s}_{mj}$ is the s of the jth unit at the peak. The grain size dependence of ${\beta}_{gj}$ is described by $ln({\beta}_{gj})^{-1}$=alnx+b [Eq. (16)], where x is the grain size, and a and b are constants. The activation enthalpy for each flow unit, ${\Delta}H_{gj}^{\neq}$ was also determined from the temperature dependence of ${\beta}_{gj}$ which is proportional to the relaxation time of the j th unit. Since the superplasticity is determined by Eq. (13), and since ${\beta}_{gj}$ and ${\Delta}H_{gj}^{\neq}$ are related, we obtained the conclusion that superplasticity occurs in the system having small ${\Delta}H_{gj}^{\neq}$ values. The Aej values were equal to the activation enthalpies of grain boundary self-diffusion of the component atoms of the alloys, this accords with our proposed flow mechanism. The ${\Delta}H_{gj}^{\neq}$ value increases with grain size as expected from Eq. (16).

  • PDF

A study on experiment from the Stair Joints Constructed with PC system part of it using the HI-FORM DECK (HI-FORM DECK를 이용한 부분 PC 계단 접합부의 접합방식에 따른 실험적 연구)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang;Kang, Woo-Joo;Han, Tae-Kyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.9-12
    • /
    • 2008
  • The semi-rigid joint is the shape of middle that can supplement the defect of pin joints and accept the good point of rigid joints. Recently, a study on the pin joints is activated in the country, but because the study on semi-rigid joints is not many, this study tried to prove with producing test model of three shape. The test models are rigid joint HI-R, semi-rigid joint HI-S, pin joint HI-P. As a result of the test, respectively HI-R, HI-S, HI-P appeared shear failure of joint, flexure failure of the top fixing, flexure failure of the lower part slipping stair slab, and the maximum strength is measured to 51.74, 51.4, 24.63kN, the stiffness is appeared 1.58, 1.19, 0.37 respectively, The yield strength is respectively kept 44.5, 47.3, 24kN, and ductility ratio is appeared to 3.31, 2.32, 1.54, when is based on KBC code, sag of the acting service load is appeared that HI-P model is over the standard. When is based on distribution of bars strain ratio, HI-S seems similar behavior incipiently, but after the yield, the semi-rigid joint was able to be judged better than pin joint because of the stress allotment of joint internal elements.

  • PDF

The Study of Comparison on Rapping Force on Generation of Corona Discharge Electrode of Electrostatic Precipitator (전기집진장치의 코로나 전류 발생 전극 제작에 따른 추타력 비교에 관한 연구)

  • Lee, Kang-Wuk;Park, Jeong-Ho;Jang, Seong-Ho;Lim, Woo-Taik;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.231-238
    • /
    • 2017
  • Rapid industrial development has led to a serious problem of pollution in the industrial sector. With the increasing social need for environmental protection, research on air pollution prevention equipment for reducing pollutants in industrial processes is actively being undertaken. The deterioration of existent, installed facilities, their increased emission rates, and the strengthening of the effluent quality standards make complying with permissible emission standards difficult. In fact, installing new electric precipitators or complementing existent facilities is inevitable. The expansion and complementation of the installed electrical precipitators have led to improvements in dust collection efficiency, shorter working times, and lower costs. Because of its easy installation and simple manufacturing process, the production method with the discharge electrode of an electric precipitator is widely used. The following conclusions were reached by classifying discharge electrodes into four types based on the production method and mutually comparing them by their dust collection efficiency. None of the four types used in this study were damaged by impact. However, we were able to confirm some strain from the compression sites of both type A and type B. Both type B and type C are expected to have greater dust collection efficiencies than the other models due to their large vibration transmissibility. Moreover, the high vibrational energy is expected to cause rapping damage during its operation. Particularly, in the case of type B, some of the strain was found at the end of the compression site. The coupling schemes of both type C and type D are out of vibration transmissibility. On the other hand, the ability to maintain straightness and solidity of the side is regarded as outstanding and stable. Type D has outstanding on-site workability, considering the presence of locking, structural stability, and work conditions. From these experiments, we determined that type C is the most ideal connection method of discharge electrode, considering its construction period of renovation. Type C is inferior to type D with regard to on-site workability. However, type C has outstanding dedusting transmission with regard to the straightness, solidity maintenance, and vibration of shearing stress.

Biomechanical Analysis of Different Thoracolumbar Orthosis Designs using Finite Element Method (유한요소 해석을 이용한 정형용 흉·요추 보조기의 형태에 따른 생체역학적 분석)

  • Kim, Y.H.;Jun, S.C.;Jung, D.Y.;Lee, S.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Thoracolumbar orthosis has been used for the rehabilitation of the patients with senile kyphosis. Recently, a number of different thoracolumbar orthosis designs have been introduced but its biomechanical effectiveness still remain unknown. In this study, we compared the pressure distribution on the surface of the trunk and stresses on the orthosis in relation to changes in connecting frame designs (Type 1, one-connecting frame type; Type 2, two-connecting frame type; Type 3, all-in-one type) using finite element (FE) models under different motions of the trunk. The results showed that Type 3 distributed the pressure on the trunk most evenly followed by Type 2 and Type 1 and the difference between Type 1 and Type 2 was negligible. ROM was limited most effectively by Type 3 ($8.5{\sim}9.4^{\circ}$), followed by Type 2 ($11.3{\sim}13.9^{\circ}$) and Type 1 ($12.1{\sim}15.4^{\circ}$). The ratio between the peak von Mises stress and yield strength of each material remained less than 20% regardless of orthosis type indicating low likelihood of component failure. In conclusion, our study found that all-in-one type of orthosis was the most effective design for the conservative treatment of spinal deformity in terms of function and comfort.

  • PDF

Structure-dependent Mechanism of Action of Poly Aromatic Hydrocarbons in Cultured Primary Hepatocytes (간세포에서 PAH의 구조 의존적 작용기전)

  • Kim Sun-Young;Hong Sung-Bum;Yang Jae-Ho
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • Among poly aromatic hydrocarbons, dioxin and PCBs are the most controversial environmental pollutants in our modern life. These pollutants are known as human carcinogens, and liver is the most sensitive target in animal cancer models. Specific aims of the study were focused on the mechanism of carcinogenesis in hepatocytes and the structure-activity relation among these diverse environmental chemicals. Because key mechanisms of dioxin-induced carcinogenesis in human epithelial cell model are the alteration of signal transduction pathway and PKC isoforms, the alteration of the signal transduction pathways and other factors associated with carcinogenesis were studied. Rat hepatocytes cultured under the sandwich protocols were exposed with the various concentration of dioxins and PCBs, and signal transduction pathway, protein kinase C isoforms, oxidant stress, and apoptotic nuclei were evaluated. Since it is important to understand the structure-activity relation among these chemicals to properly assess the carcinogenic potentials, the study analyzed the parameters associated with carcinogenic processes, based on their structural characteristics. In addition, signal transduction pathways and PKC isoforms involved in inhibition of UV-induced apoptosis were also analyzed to elaborate the tumor promotion mechanism of these chemicals. Induction of apoptosis by UV irradiation was optimal at $60\;J/m^2$ in primary hepatocyte in culture. Compared to non coplanar PCBs such as PCB 114 and PCB 153, coplanar PCBs such as PCB 77 and PCB126 showed a stronger inhibition of apoptosis induced by UV irradiation. Production of reactive oxygen species (ROS) was more stimulated by non-coplanar PCBs than coplanar PCBs with the most potent induction of ROS by chlorinated non-coplanar PCB. As compared to the level of induction by PCB126, non-coplanar PCB153 showed a higher increase of intracellular concentrations. Besides the alteration of intracellular calcium concentration, translocation of PKC from cytosolic fraction to membrane fraction was clearly observed upon the exposure of non-coplanar PCB. Taken together, the present study demonstrated that there is a potent structure-activity relationship among PCB congeners and the mechanism of PAH-induced carcinogenesis is structure-specific. The study suggested that more diverse pathways of PAH-induced carcinogenesis should be taken into account beyond the boundary of Ah receptor dogma to assess the health impact of PAH with more accuracy.