Development of a Method of Cybersickness Evaluation with the Use of 128-Channel Electroencephalography
![]() |
Han, Dong-Uk
(과학기술연합대학원대학교 한국표준과학연구원 캠퍼스 의학물리학)
Lee, Dong-Hyun (과학기술연합대학원대학교 한국표준과학연구원 캠퍼스 의학물리학) Ji, Kyoung-Ha (충남대학교 의류학과) Ahn, Bong-Yeong (한국표준과학연구원 의료융합표준센터) Lim, Hyun-Kyoon (한국표준과학연구원 의료융합표준센터) |
1 | Song, S. W. (2009). Using the Receiver Operating Characteristic (ROC) Curve to Measure Sensitivity and Specificity. Korean Journal of Family Medicine, 30(11). DOI: 10.4082/kjfm.2009.30.11.841 |
2 | Staudigl, T., Leszczynski, M., Jacobs, J., Sheth, S. A., Schroeder, C. E., Jensen, O., & Doeller, C. F. (2018). Hexadirectional Modulation of High-Frequency Electrophysiological Activity in the Human Anterior Medial Temporal Lobe Maps Visual Space. Current Biology, 28(20), 3325-3329. e3324. DOI: 10.1016/j.cub.2018.09.035 DOI |
3 | Steinicke, F., Bruder, G., & Kuhl, S. J. A. T. o. G. (2011). Realistic perspective projections for virtual objects and environments. ACM Transactions on Graphics, 30(5), 112. DOI: 10.1145/2019627.2019631 |
4 | Gavgani, A. M., Nesbitt, K. V., Blackmore, K. L., & Nalivaiko, E. (2017). Profiling subjective symptoms and autonomic changes associated with cybersickness. Autonomic Neuroscience, 203, 41-50. DOI: 10.1016/j.autneu.2016.12.004 DOI |
5 | Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain research bulletin, 47(5), 507-516. DOI: 10.1016/s0361-9230(98)00091-4 DOI |
6 | Greiner, M., Pfeiffer, D., & Smith, R. (2000). Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive veterinary medicine, 45(1-2), 23-41. DOI: 10.1016/s0167-5877(00)00115-x DOI |
7 | Golding, J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual differences, 41(2), 237-248. DOI: 10.1016/j.paid.2006.01.012 DOI |
8 | Goldman, R. I., Stern, J. M., Engel Jr, J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487. DOI:10.1097/01.wnr.0000047685.08940.d0 DOI |
9 | Golikova, Z., & Strelets, V. (2003). Development of examination stress in subjects with various levels of cortical activation. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 53(6), 697-704. |
10 | Harvey, C., & Howarth, P. A. (2007). The effect of display size on visually-induced motion sickness (VIMS) and skin temperature. Paper presented at the Proceedings of the 1st international symposium on visually induced motion sickness, fatigue, and photosensitive epileptic seizures, Hong Kong. |
11 | Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., & Langer, N. (2018). ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific data, 5, 180291. DOI: 10.1038/sdata.2018.291 |
12 | Toschi, N., Kim, J., Sclocco, R., Duggento, A., Barbieri, R., Kuo, B., & Napadow, V. (2017). Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. Autonomic Neuroscience, 202, 108-113. DOI: 10.1016/j.autneu.2016.10.003 DOI |
13 | Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front Psychol, 10, 158. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30778320.DOI: 10.3389/fpsyg.2019.00158 DOI |
14 | Wirsich, J., Ridley, B., Besson, P., Jirsa, V., Benar, C., Ranjeva, J.-P., & Guye, M. (2017). Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity. NeuroImage, 161, 251-260. DOI: 10.1016/j.neuroimage.2017.08.055 DOI |
15 | Wiederhold, B. K. (2006). The potential for virtual reality to improve health care. The Virtual Reality Medical Center. |
16 | Wiederhold, M. D., & Wiederhold, B. K. (2007). Virtual reality and interactive simulation for pain distraction. In: Blackwell Publishing Inc Malden, USA. DOI: 10.1111/j.1526-4637.2007.00381.x |
17 | Wikimedia Commons (2011a). International 10-20 system for EEG electrode placement. https://commons.wikimedia.org/wiki/File:International_10-20_system_for_EEG-MCN.svg |
18 | Young, S. D., Adelstein, B. D., & Ellis, S. R. (2006). Demand characteristics of a questionnaire used to assess motion sickness in a virtual environment. Paper presented at the IEEE Virtual Reality Conference (VR 2006). DOI: 10.1109/vr.2006.44 |
19 | Zużewicz, K., Saulewicz, A., Konarska, M., & Kaczorowski, Z. (2011). Heart rate variability and motion sickness during forklift simulator driving. International Journal of Occupational Safety and Ergonomics, 17(4), 403-410. DOI: 10.1080/10803548.2011.11076903 DOI |
20 | Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2), 1-11. |
21 | Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10-20 system electrode placement. Electroencephalography and clinical neurophysiology, 66(4), 376-382. DOI: 10.1016/0013-4694(87)90206-9 DOI |
22 | Kaiser, D. A. (2010). Cortical cartography. Biofeedback, 38(1), 9-12. DOI: 10.5298/1081-5937-38.1.9 DOI |
23 | Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018). Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied ergonomics, 69, 66-73. DOI: 10.1016/j.apergo.2017.12.016 DOI |
24 | Keil, A., Stolarova, M., Heim, S., Gruber, T., & Muller, M. M. (2003). Temporal stability of high-frequency brain oscillations in the human EEG. Brain Topography, 16(2), 101-110. DOI: 10.1023/b:brat.0000006334.15919.2c DOI |
25 | Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220. DOI: 10.1207/s15327108ijap0303_3 DOI |
26 | Keshavarz, B., & Hecht, H. (2011). Axis rotation and visually induced motion sickness: the role of combined roll, pitch, and yaw motion. Aviation, space, and environmental medicine, 82(11), 1023-1029. DOI: 10.3357/asem.3078.2011 DOI |
27 | Kim, Y. Y., Kim, E. N., Park, M. J., Park, K. S., Ko, H. D., & Kim, H. T. (2008). The application of biosignal feedback for reducing cybersickness from exposure to a virtual environment. Presence: Teleoperators and Virtual Environments, 17(1), 1-16. DOI |
28 | Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616-625. DOI: 10.1111/j.1469-8986.2005.00349.x DOI |
29 | Klem, G. H., Lüders, H. O., Jasper, H., & Elger, C. (1999). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 52(3), 3-6. |
30 | Koessler, L., Maillard, L., Benhadid, A., Vignal, J. P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. NeuroImage, 46(1), 64-72. DOI: 10.1016/j.neuroimage.2009.02.006 DOI |
31 | Kolasinski, E. M. (1995). Simulator Sickness in Virtual Environments. (No. ARI-TR-1027). Army Research Institute for the Behavioral and Social Sciences. DOI:10.21236/ada295861 |
32 | Labounek, R., Janecek, D., Marecek, R., Lamos, M., Slavicek, T., Mikl, M., . . . Jan, J. (2016). Generalized EEG-fMRI spectral and spatiospectral heuristic models. Paper presented at the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). DOI: 10.1109/isbi.2016.7493379 |
33 | LaCount, L., Napadow, V., Kuo, B., Park, K., Kim, J., Brown, E. N., & Barbieri, R. (2009). Dynamic cardiovagal response to motion sickness: a point-process heart rate variability study. Paper presented at the 2009 36th Annual Computers in Cardiology Conference (CinC). |
34 | Larson, E. B., Ramaiya, M., Zollman, F. S., Pacini, S., Hsu, N., Patton, J. L., & Dvorkin, A. Y. (2011). Tolerance of a virtual reality intervention for attention remediation in persons with severe TBI. Brain Injury, 25(3), 274-281. DOI: 10.3109/02699052.2010.551648 DOI |
35 | Lin, C.-L., Jung, T.-P., Chuang, S.-W., Duann, J.-R., Lin, C.-T., & Chiu, T.-W. (2013). Self-adjustments may account for the contradictory correlations between HRV and motion-sickness severity. International Journal of Psychophysiology, 87(1), 70-80. DOI: 10.1016/j.ijpsycho.2012.11.003 DOI |
36 | Liu, C.-L., & Uang, S.-T. (2012). A study of sickness induced within a 3D virtual store and combated with fuzzy control in the elderly. Paper presented at the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. DOI:10.1109/fskd.2012.6234149 |
37 | Bhandari, J., MacNeilage, P., & Folmer, E. (2018). Teleportation without Spatial Disorientation Using Optical Flow Cues. Paper presented at the Proceedings of Graphics Interface. |
38 | Aykent, B., Yang, Z., Merienne, F., & Kemeny, A. (2014). Simulation sickness comparison between a limited field of view virtual reality head mounted display (Oculus) and a medium range field of view static ecological driving simulator (Eco2). Paper presented at the Driving Simulation Conference Europe 2014 Proceedings. |
39 | Benzeroual, K., & Allison, R. S. (2013). Cyber (motion) sickness in active stereoscopic 3D gaming. Paper presented at the 2013 International Conference on 3D Imaging. DOI: 10.1109/ic3d.2013.6732090 |
40 | Berntsen, K., Palacios, R. C., & Herranz, E. (2016). Virtual reality and its uses: a systematic literature review. Paper presented at the Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality. DOI: 10.1145/3012430.3012553 |
41 | Bonato, F., Bubka, A., & Palmisano, S. (2009). Combined pitch and roll and cybersickness in a virtual environment. Aviation, Space, and Environmental Medicine, 80(11), 941-945. DOI: 10.3357/asem.2394.2009 DOI |
42 | Bonato, F., Bubka, A., Palmisano, S., Phillip, D., Moreno, G., & Environments, V. (2008). Vection change exacerbates simulator sickness in virtual environments. PRESENCE: Teleoperators and Virtual Environments, 17(3), 283-292. DOI: 10.1162/pres.17.3.283 DOI |
43 | Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. DOI: 10.1016/s0031-3203(96)00142-2 DOI |
44 | Luu, P., & Ferree, T. (2005). Determination of the HydroCel Geodesic Sensor Nets' average electrode positions and their 10-10 international equivalents. Inc, Technical Note. |
45 | Llorach, G., Evans, A., & Blat, J. (2014). Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system. Paper presented at the Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology. DOI: 10.1145/2671015.2671120 |
46 | Lo, W., & So, R. H. (2001). Cybersickness in the presence of scene rotational movements along different axes. Applied ergonomics, 32(1), 1-14. DOI: 10.1016/s0003-6870(00)00059-4 DOI |
47 | Lubeck, A. J., Bos, J. E., & Stins, J. F. (2015). Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway. Displays, 38, 55-61. DOI: 10.1016/j.displa.2015.03.001 DOI |
48 | McCann, R. A., Armstrong, C. M., Skopp, N. A., Edwards-Stewart, A., Smolenski, D. J., June, J. D., . . . Reger, G. M. (2014). Virtual reality exposure therapy for the treatment of anxiety disorders: an evaluation of research quality. Journal of anxiety disorders, 28(6), 625-631. DOI: 10.1016/j.janxdis.2014.05.010 DOI |
49 | McCauley, M. E., & Sharkey, T. J. (1992). Cybersickness: Perception of self-motion in virtual environments. Presence: Teleoperators & Virtual Environments, 1(3), 311-318. DOI: 10.1162/pres.1992.1.3.311 DOI |
50 | McMenamin, B. W., Shackman, A. J., Maxwell, J. S., Bachhuber, D. R., Koppenhaver, A. M., Greischar, L. L., & Davidson, R. J. (2010). Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. NeuroImage, 49(3), 2416-2432. DOI: 10.1016/j.neuroimage.2009.10.010 DOI |
51 | Microsoft (2019). Headpose. Retrieved from https://docs.microsoft.com/ko-kr/azure/cognitive-services/face/images/headpose.1.jpg |
52 | Chen, A. C., Dworkin, S. F., Haug, J., & Gehrig, J. (1989). Topographic brain measures of human pain and pain responsivity. Pain, 37(2), 129-141. DOI: 10.1016/0304-3959(89)90125-5 DOI |
53 | Calbi, M., Siri, F., Heimann, K., Barratt, D., Gallese, V., Kolesnikov, A., & Umilta, M. A. (2019). How context influences the interpretation of facial expressions: a source localization high-density EEG study on the "Kuleshov effect". Scientific reports, 9(1), 2107. DOI: 10.1038/s41598-018-37786-y |
54 | Chang, E., Seo, D., Kim, H. T., & Yoo, B. (2018). An Integrated Model of Cybersickness: Understanding User's Discomfort in Virtual Reality. Journal of KIISE, 45(3), 251-279. DOI: 10.5626/jok.2018.45.3.251 DOI |
55 | Chardonnet, J.-R., Mirzaei, M. A., & Merienne, F. (2015). Visually induced motion sickness estimation and prediction in virtual reality using frequency components analysis of postural sway signal. Paper presented at the International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments. |
56 | Chen, D., So, R., Kwok, K., & Cheung, R. (2012). Visually induced motion sickness after watching scenes oscillating at different frequencies and amplitudes. Ergonomics & Human Factors. Blackpool, UK, 253-260. DOI: 10.1201/b11933-61 |
57 | Chen, S., Jia, Y., & Woltering, S. (2018). Neural differences of inhibitory control between adolescents with obesity and their peers. International Journal of Obesity, 42(10), 1753. DOI: 10.1038/s41366-018-0142-x DOI |
58 | Chen, W., Chen, J., & So, R. H. Y. (2011). Visually induced motion sickness: effects of translational visual motion along different axes. Contemporary Ergonomics and Human Factors, 281-287. DOI: 10.1201/b11337-47 |
59 | Min, B.-C., Chung, S.-C., Min, Y.-K., & Sakamoto, K. (2004). Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Applied ergonomics, 35(6), 549-556. DOI: 10.1016/j.apergo.2004.06.002 DOI |
60 | Chen, Y. C., Duann, J. R., Chuang, S. W., Lin, C. L., Ko, L. W., Jung, T.-P., & Lin, C.-T. (2010). Spatial and temporal EEG dynamics of motion sickness. NeuroImage, 49(3), 2862-2870. DOI: 10.1016/j.neuroimage.2009.10.005 DOI |
61 | Nalivaiko, E., Davis, S. L., Blackmore, K. L., Vakulin, A., & Nesbitt, K. V. (2015). Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiology & Behavior, 151, 583-590. DOI: 10.1016/j.autneu.2015.07.032 DOI |
62 | Napadow, V., Sheehan, J. D., Kim, J., LaCount, L. T., Park, K., Kaptchuk, T. J., . . . Kuo, B. J. (2012). The brain circuitry underlying the temporal evolution of nausea in humans. Cerebral Cortex, 23(4), 806-813. DOI: 10.1093/cercor/bhs073 DOI |
63 | Naqvi, S. A. A., Badruddin, N., Jatoi, M. A., Malik, A. S., Hazabbah, W., & Abdullah, B. (2015). EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS). Australasian physical & engineering sciences in medicine, 38(4), 721-729. DOI: 10.1007/s13246-015-0379-9 DOI |
64 | Niemiec, A. J., & Lithgow, B. J. (2006). Alpha-band characteristics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. Paper presented at the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. DOI: 10.1109/iembs.2005.1616251 |
65 | Nuwer, M. R. (2018). 10-10 electrode system for EEG recording. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 129(5), 1103-1103. DOI: 10.1016/j.clinph.2018.01.065 DOI |
66 | Cobb, S. V., Nichols, S., Ramsey, A., & Wilson, J. R. (1999). Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoperators & Virtual Environments, 8(2), 169-186. DOI: 10.1162/105474699566152 DOI |
67 | Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., . . . Dan, I. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage, 21(1), 99-111. DOI: 10.1016/j.neuroimage.2003.08.026 DOI |
68 | Cheron, G., Leroy, A., De Saedeleer, C., Bengoetxea, A., Lipshits, M., Cebolla, A., . . . McIntyre, J. (2006). Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Research, 1121(1), 104-116. DOI: 10.1016/j.brainres.2006.08.098 DOI |
69 | Clemes, S. A., & Howarth, P. A. (2005). The menstrual cycle and susceptibility to virtual simulation sickness. Journal of Biological Rhythms, 20(1), 71-82. DOI: 10.1177/0748730404272567 DOI |
70 | Cornick, J. E., & Blascovich, J. (2014). Are Virtual Environments the New Frontier in Obesity Management? Social and Personality Psychology Compass, 8(11), 650-658. DOI: 10.1111/spc3.12141 DOI |
71 | Davis, S., Nesbitt, K., & Nalivaiko, E. (2014). A systematic review of cybersickness. Paper presented at the Proceedings of the 2014 Conference on Interactive Entertainment. DOI: 10.1145/2677758.2677780 |
72 | Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443-1449. DOI: 10.1016/j.neuroimage.2006.11.004 DOI |
73 | Dennison, M. S., Wisti, A. Z., & D'Zmura, M. (2016). Use of physiological signals to predict cybersickness. Displays, 44, 42-52. DOI: 10.1016/j.displa.2016.07.002 DOI |
74 | Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101-125. DOI: 10.1007/s10055-016-0285-9 DOI |
75 | Dou, W., Li, J., Sun, S., Yu, H., Lv, X., Yang, Y., . . . Li, M., & Pu, F. (2019). Comparison of Electroencephalogram (EEG) Power Spectra Between Non-Vection and Vection. Journal of Medical Imaging and Health Informatics, 9(1), 58-62. DOI: 10.1166/jmihi.2019.2540 DOI |
76 | Palmisano, S., Mursic, R., & Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46, 1-8. DOI: 10.1016/j.displa.2016.11.001 DOI |
77 | Parsons, T. D., Rizzo, A. A., Rogers, S., & York, P. (2009). Virtual reality in paediatric rehabilitation: a review. Developmental neurorehabilitation, 12(4), 224-238. DOI: 10.1080/17518420902991719 DOI |
78 | Riccelli, R., Passamonti, L., Toschi, N., Nigro, S., Chiarella, G., Petrolo, C., . . . Indovina, I. (2017). Altered insular and occipital responses to simulated vertical self-motion in patients with persistent postural-perceptual dizziness. Frontiers in Neurology, 8, 529. DOI: 10.3389/fneur.2017.00529 DOI |
79 | Rosenkranz, K., & Lemieux, L. (2010). Present and future of simultaneous EEG-fMRI. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 309-316. DOI: 10.1007/s10334-009-0196-9 DOI |
80 | Ruffle, J. K., Patel, A., Giampietro, V., Howard, M. A., Sanger, G. J., Andrews, P. L. R., . . . Farmer, A. D. (2019). Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning. Journal of Physiology, 597(6), 1517-1529. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30629751. DOI: 10.1113/JP277474 DOI |
81 | Dzhebrailova, T. D. (2003). Spectral EEG characteristics in students with different anxiety profile during tests. Zhurnal vysshei nervnoi deiatelnosti imeni IP Pavlova, 53(4), 495-502. DOI: 10.1023/b:hump.0000049581.77570.9c |
82 | Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Display, 29(2), 58-69. DOI: 10.1016/j.displa.2007.09.005 DOI |
83 | Shigemasu, H., Morita, T., Matsuzaki, N., Sato, T., Harasawa, M., & Aizawa, K. (2006). Effects of physical display size and amplitude of oscillation on visually induced motion sickness. Paper presented at the Proceedings of the ACM symposium on Virtual reality software and technology. DOI: 10.1145/1180495.1180571 |
84 | Duh, H. B.-L., Parker, D. E., & Furness, T. A. (2001). An "independent visual background" reduced balance disturbance envoked by visual scene motion: implication for alleviating simulator sickness. Paper presented at the Proceedings of the SIGCHI conference on human factors in computing systems. DOI: 10.1145/365024.365051 |
85 | Farmer, A. D., Ban, V. F., Coen, S. J., Sanger, G. J., Barker, G. J., Gresty, M. A., . . . Aziz, Q. (2015). Visually induced nausea causes characteristic changes in cerebral, autonomic and endocrine function in humans. The Journal of physiology, 593(5), 1183-1196. DOI: 10.1113/jphysiol.2014.284240 DOI |
86 | Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. DOI: 10.1016/j.patrec.2005.10.010 DOI |
87 | Fernandes, A. S., & Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. Paper presented at the 2016 IEEE Symposium on 3D User Interfaces (3DUI). DOI: 10.1109/3dui.2016.7460053 |
88 | Gavgani, A. M., Hodgson, D. M., & Nalivaiko, E. J. (2017). Effects of visual flow direction on signs and symptoms of cybersickness. PLOS ONE, 12(8), e0182790. DOI: 10.1371/journal.pone.0182790 DOI |
89 | Ferrer-Garcia, M., Gutierrez-Maldonado, J., & Riva, G. (2013). Virtual reality based treatments in eating disorders and obesity: a review. Journal of Contemporary Psychotherapy, 43(4), 207-221. DOI: 10.1007/s10879-013-9240-1 DOI |
90 | Gasser, T., Verleger, R., Bacher, P., & Sroka, L. (1988). Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69(2), 91-99. DOI: 10.1016/0013-4694(88)90204-0 DOI |
91 | So, R. H., & Lo, W. (1998). Cybersickness with virtual reality training applications: a claustrophobia phenomenon with head-mounted displays. Paper presented at the Proceeding of the 1st world congress on ergonomics for global quality and productivity, Hong Kong. |
92 | So, R. H., & Lo, W. (1999). Cybersickness: an experimental study to isolate the effects of rotational scene oscillations. Paper presented at the Proceedings IEEE Virtual Reality (Cat. No. 99CB36316). DOI: 10.1109/vr.1999.756957 |
93 | So, R. H., Ho, A., & Lo, W. (2001). A metric to quantify virtual scene movement for the study of cybersickness: Definition, implementation, and verification. Presence: Teleoperators & Virtual Environments, 10(2), 193-215. DOI: 10.1162/105474601750216803 DOI |
94 | So, R. H., Lo, W., & Ho, A. T. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human factors, 43(3), 452-461. DOI: 10.1518/001872001775898223 DOI |
95 | Soininen, H., Partanen, J., Paakkonen, A., Koivisto, E., & Riekkinen, P. (1991). Changes in absolute power values of EEG spectra in the follow‐up of Alzheimer's disease. Acta Neurologica Scandinavica, 83(2), 133-136. DOI |
![]() |