• Title/Summary/Keyword: stress gene

Search Result 1,283, Processing Time 0.026 seconds

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Expression of a Cu-Zn Superoxide Dismutase Gene in Response to Stresses and Phytohormones in Rehmannia Glutinosa

  • Park, Myoung-Ryoul;Ryu, Sang-Soo;Yoo, Nam-Hee;Yu, Chang-Yeon;Yun, Song-Joong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.270-275
    • /
    • 2005
  • Superoxide dismutases (SOD) are metalloenzymes that convert $O_2^-\;to\;H_2O_2$. Rehmannia glutinosa is highly tolerant to paraquat-induced oxidative stress. The primary objective of this study was to characterize regulation of SOD gene expression in R. glutinosa in response to oxidative stresses and hormones. A full-length putative SOD clone (RgCu-ZnSOD1) was isolated from the leaf cDNA library of R. glutinosa using an expressed sequence tag clone as a probe. RgCu-ZnSOD1 cDNA is 777 bp in length and contains an open reading frame for a polypeptide consisted of 152 amino acid residues. The deduced amino acid sequence of the clone shows highest sequence similarity to the cytosolic Cu-ZnSODs. The two to three major bands with several minor ones on the Southern blots indicate that RgCu-ZnSOD1 is a member of a small multi-gene family. RgCuZnSOD1 mRNA was constitutively expressed in the leaf, flower and root. The expression of RgCu-ZnSOD1 mRNA was increased about 20% by wounding and paraquat, but decreased over 50% by ethylene and $GA_3$. This result indicates that the RgCu-ZnSOD1 expression is regulated differentially by different stresses and phytohormones at the transcription level. The RgCu-ZnSOD1 sequence and information on its regulation will be useful in investigating the role of SOD in the paraquat tolerance of R. glutinosa.

Combining Ability for Morphological and Biochemical Characters in Mulberry (Morns spp.) under Salinity Stress

  • Vijayan, Kunjupillai;Chakraborti, Shyama Prasad;Doss, Subramaniam Gandhi;Ghosh, Partha Deb;Ercisli, Sezai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • A line x tester analysis was carried out in mulberry (Morns spp.) under different salinity levels to determine the changes in the genetic interaction of various morpho-biochemical characters. Five mulberry genotypes, 3 females and 2 males, differing in salt tolerance were selected for the study. Clones of these parents along with clones of the F1 hybrids were planted in earthen pots and subjected to different levels of salinity (0.0%, 0.25%, 0.50%, 0.75% and 1.00% NaCl). Data on morphological and biochemical characters were subjected to line x tester analysis. The result revealed significant variation among the parents studied. The prominence of non-additive gene effect under control condition suggests the need for well chalked out breeding program to exploit the non-fixable variance of components for improvement of plant height, leaf size and leaf yield, chlorophyll and photosynthesis in mulberry. However, under salinity stress a shift from non-additive gene effect to additive gene effect for the above said character further suggests the need for a change in breeding strategy. The general combining ability (GCA) analysis has identified English black as the best combiner among the parents and the specific combining ability analysis (SCA) found crosses of English black X C776 and Rotndiloba x Mandalaya were good for Plant height and leaf size and English black X C776 and Rotundiloba x C776 were good for biochemical proline and chlorophyll. From the performance of parents and their crosses under different salinity levels and also under normal cultural conditions it is concluded that in mulberry different approaches are required to develop varieties for the irrigated and saline conditions.

Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress

  • Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Kang, Sang-Mo;Adhikari, Bishnu;Imran, Muhammad;Jan, Rahmatullah;Kim, Kyung-Min;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.118-126
    • /
    • 2020
  • Silicon and phosphorus are elements that are beneficial for plant growth. Despite the abundant availability of silicate and phosphate in the Earth's crust, crop nutritional requirements for silicon and phosphorus are normally met through the application of fertilizer. However, fertilizers are one of the major causes of heavy metal pollution. In our study, we aimed to assess silicate and phosphate solubilization by the bacteria Enterobacter ludwigii GAK2, in the presence and absence of phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), to counteract cadmium stress in rice (Oryza sativa L). Our results showed that the GAK2-treated rice plants, grown in soil amended with phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), had significantly reduced cadmium content, and enhanced plant growth promoting characteristics including fresh shoot and root weight, plant height, and chlorophyll content. These plants showed significant downregulation of the cadmium transporter gene, OsHMA2, and upregulation of the silicon carrier gene, OsLsi1. Moreover, jasmonic acid levels were significantly reduced in the GAK2-inoculated plants, and this was further supported by the downregulation of the jasmonic acid related gene, OsJAZ1. These results indicate that Enterobacter ludwigii GAK2 can be used as a silicon and phosphorus bio-fertilizer, which solubilizes insoluble silicate and phosphate, and mitigates heavy metal toxicity in crops.

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol

  • Li, Liangzhi;Yang, Tianyi;Guo, Weiqiang;Ju, Xin;Hu, Cuiying;Tang, Bingyu;Fu, Jiaolong;Gu, Jingsheng;Zhang, Haiyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.700-709
    • /
    • 2016
  • The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.

Isolation and Characterization of Calmodulin Gene from Panax ginseng C. A. Meyer

  • Wasnik, Neha G.;Kim, Yu-Jin;Kim, Se-Hwa;Sathymoorthy, S.;Pulla, Rama Krishna;Parvin, Shohana;Senthil, Kalaiselvi;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • $Ca^{2+}$ and calmodulin (CaM), a key $Ca^{2+}$ sensor in all eukaryotes, have been implicated for defense responses of plants. Eukaryotic CaM contains four structurally and functionally similar $Ca^{2+}$ domains named I, II, III and IV. Each $Ca^{2+}$ binding loop consists of 12 amino acid residues with ligands arranged spatially to satisfy the octahedral symmetry of $Ca^{2+}$ binding. To investigate the altered gene expression and the role of CaM in ginseng plant defense system, cDNA clone containing a CaM gene, designated PgCaM was isolated and sequenced from Panax ginseng. PgCaM, which has open reading frame of 450 nucleotides predicted to encode a precursor protein of 150 amino acid residues. Its sequence shows high homologies with a number of other CaMs, with more similarity to CaM of Daucus carota (AAQ63461). The expression of PgCaM in different P. ginseng organs was analyzed using real time PCR. The results showed that PgCaM expressed at different levels in young leaves, shoots, and roots of 3-week-old P. ginseng. In addition, the expressions of PgCaM under different abiotic stresses were analyzed at different time intervals.

Dexamethasone induces the expression of LRRK2 and α-synuclein, two genes that when mutated cause Parkinson's disease in an autosomal dominant manner

  • Park, Ji-Min;Ho, Dong-Hwan;Yun, Hye Jin;Kim, Hye-Jung;Lee, Chan Hong;Park, Sung Woo;Kim, Young Hoon;Son, Ilhong;Seol, Wongi
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.454-459
    • /
    • 2013
  • LRRK2 (leucine-rich repeat kinase 2) has been identified as a gene corresponding to PARK8, an autosomal-dominant gene for familial Parkinson's disease (PD). LRRK2 pathogenic-specific mutants induce neurotoxicity and shorten neurites. To elucidate the mechanism underlying LRRK2 expression, we constructed the LRRK2-promoter-luciferase reporter and used it for promoter analysis. We found that the glucocorticoid receptor (GR) transactivated LRRK2 in a ligand-dependent manner. Using quantitative RT-PCR and Western analysis, we further showed that treatment with dexamethasone, a synthetic GR ligand, induced LRRK2 expression at both the transcriptional and translational levels, in dopaminergic MN9D cells. Dexamethasone treatment also increased expression of ${\alpha}$-synuclein, another PD causative gene, and enhanced transactivation of the ${\alpha}$-synuclein promoter-luciferase reporter. In addition, dexamethasone treatment to MN9D cells weakly induced cytotoxicity based on an LDH assay. Because glucocorticoid hormones are secreted in response to stress, our data suggest that stress might be a related factor in the pathogenesis of PD.

Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach

  • Zhang, Ning;Si, Huai-Jun;Wen, Gang;Du, Hong-Hui;Liu, Bai-Lin;Wang, Di
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • Drought and salinity are the most important abiotic stresses that affect the normal growth and development of plants. Glycine betaine is one of the most important osmolytes present in higher plants that enable them to cope with environmental stresses through osmotic adjustment. In this study, a betaine aldehyde dehydrogenase (BADH) gene from spinach under the control of the stress-induced promoter rd29A from Arabidopsis thaliana was introduced into potato cultivar Gannongshu 2 by the Agrobacterium tumefaciens system. Putative transgenic plants were confirmed by Southern blot analysis. Northern hybridization analysis demonstrated that expression of BADH gene was induced by drought and NaCl stress in the transgenic potato plants. The BADH activity in the transgenic potato plants was between 10.8 and 11.7 U. There was a negative relationship (y = -2.2083x + 43.329, r = 0.9495) between BADH activity and the relative electrical conductivity of the transgenic potato plant leaves. Plant height increased by 0.4-0.9 cm and fresh weight per plant increased by 17-29% for the transgenic potato plants under NaCl and polyethylene glycol stresses compared with the control potato plants. These results indicated that the ability of transgenic plants to tolerate drought and salt was increased when their BADH activity was increased.

Overexpression of NtROS2a gene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice (시토신 탈메틸화 관련 NtROS2a 유전자 도입 형질전환벼의 건조스트레스 내성 증진)

  • Choi, Jang Sun;Lee, In Hye;Cho, Yong-Gu;Jung, Yu Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.376-382
    • /
    • 2016
  • DNA methylation regulations gene expression, thus having pivotal roles in a myriad of physiological and pathological processes. In this study, the morphology and stress tolerance of transgenic rice overexpressing NtROS2a were determined. Transgenic plants exhibited less and shorter lateral shoots. Under various treatments, rice overexpressing NtROS2a showed alleviation of damage symptoms with higher survival rate. After drought and re-watering treatment, transgenic rice seedlings restored their normal growth. However, wild type plants could not be rescued. These findings indicate that overexpression of NtROS2a gene in rice seedlings can increase their tolerance to drought stresses.

Detection of PSS Gene through Genomic DNA of Umbilical Cord Blood by PCR-RFLP in Piglets (자돈의 제대혈 Genomic DNA를 이용한 PSS 유전자 검색)

  • 김계웅;유재영;박홍양;윤종만;조규석;정재록;김건중;이종완
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.97-102
    • /
    • 2003
  • This study was carried out to find out PSS(Porcine Stress Syndrome) with the PSE(Pale, Soft, Exudative) in different piglets. These experiments were accomplished with the aid of PCR-RFLP(Polymerase Chain Reaction-Restriction Fragment Length Polymorphism). The samples were collected and examined from umbilical cord blood of piglets of Yorkshire, Landrace and Crossbred. And then, the PCR products were digested by restriction enzyme, Hha I. The results obtained were as follows; The PCR products of the blood genomic DNA of ryanodine receptor gene were length of 1 .8kb in umbilical cord blood. Normal type(NN), heterozygous type(Nn) and recessively homozygous type(nn, PSS) as a result of digestion of restriction enzyme, Hha 1, were 90.0%, 10.0% and 0.0% in Yorkshire piglets, 76.2%, 19.0% and 4.8% in Landrace, 69.1%, 23.8% and 7.1% in crossbred, respectively. As already showing the above results, the blood from piglets umbilical cord can be availably used for the determination of genotypes of PSS because of easiness of blood collection without stress in live piglets.