Browse > Article
http://dx.doi.org/10.5142/JGR.2009.33.1.059

Isolation and Characterization of Calmodulin Gene from Panax ginseng C. A. Meyer  

Wasnik, Neha G. (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Kim, Yu-Jin (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Kim, Se-Hwa (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Sathymoorthy, S. (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Pulla, Rama Krishna (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Parvin, Shohana (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Senthil, Kalaiselvi (Avinashilingam University for Women)
Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products and Ginseng Genetic Resource Bank, Kyung Hee University)
Publication Information
Journal of Ginseng Research / v.33, no.1, 2009 , pp. 59-64 More about this Journal
Abstract
$Ca^{2+}$ and calmodulin (CaM), a key $Ca^{2+}$ sensor in all eukaryotes, have been implicated for defense responses of plants. Eukaryotic CaM contains four structurally and functionally similar $Ca^{2+}$ domains named I, II, III and IV. Each $Ca^{2+}$ binding loop consists of 12 amino acid residues with ligands arranged spatially to satisfy the octahedral symmetry of $Ca^{2+}$ binding. To investigate the altered gene expression and the role of CaM in ginseng plant defense system, cDNA clone containing a CaM gene, designated PgCaM was isolated and sequenced from Panax ginseng. PgCaM, which has open reading frame of 450 nucleotides predicted to encode a precursor protein of 150 amino acid residues. Its sequence shows high homologies with a number of other CaMs, with more similarity to CaM of Daucus carota (AAQ63461). The expression of PgCaM in different P. ginseng organs was analyzed using real time PCR. The results showed that PgCaM expressed at different levels in young leaves, shoots, and roots of 3-week-old P. ginseng. In addition, the expressions of PgCaM under different abiotic stresses were analyzed at different time intervals.
Keywords
Abiotic stress; calmodulin; Panax ginseng; real-time PCR; stress;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang, T., yadun, S. l., Feldman, M. and Fromm, H. : Developmentally regulated organ, tissue, and cell specific expression of calmodulin genes in common wheat. Plant Mol. Biol. 37, 109–120 (1998)   DOI   ScienceOn
2 Perera, I. Y. and Zielinski, R. E. : Structure and expression of the arabidopsis CAM3 calmodulin gene Plant Mol. Biol. 19, 649-664 (1992)   DOI   ScienceOn
3 Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. : Self-Reporting arabidopsis expressing pH and [$Ca^{2+}$] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol. 134, 898-908 (2004)   DOI   ScienceOn
4 Felesenstein, J. : Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39(4), 783-791 (1985)   DOI   ScienceOn
5 Geourjon, C. and Deleage, G. : SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 6, 681-684 (1995)
6 Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Apple, R. D. and Bairoch, A. : Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, Humana Press., pp.571-607 (2005)
7 Melkko, S., halin, C., Borsi, L., Zardi, L. and Neri, D. : An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int. J. Radiation Oncology Biol. Phy. 54 (5), 1485-1490 (2002)   DOI   ScienceOn
8 Hamdane, D., Laurent, K., Dewilde, S., Uzan, J., Burmester, T., Thomas, H., Moens, L. and Marden, M. C. : Hyperthermal stability of neuroglobin and cytoglobin. FBBS J. 272, 2076-2084 (2005)   DOI   ScienceOn
9 Chiasson, D., Ekengren, S. K., Martin, G. B., Dobney, S. L. and Snedden, W. A. : Calmodulin-like proteins from arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. Tomato. Plant Mol. Biol. 58, 887-897 (2005)   DOI   ScienceOn
10 Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F. and Tan. M. : Calcium-CaM is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays). Plants New Phytol. 173, 27-38 (2007)   DOI   ScienceOn
11 Yang, T. and Poovaiah, B. W. : Calcium/CaM-mediated signal network in plants. Trends in Plant Sci., 8, 505-512 (2003)   DOI   ScienceOn
12 Reddy, V. S., Ali, G. S. and Reddy, A. S. N. : Characterization of a pathogen-induced CaM-binding protein: mapping of four $Ca^{2+}$-dependent CaM-binding domains. Plant Mol. Biol. 52, 143-159 (2003)   DOI   ScienceOn
13 Anderson, J. M. and Cormier, M. J. : Calcium dependent regulation of NAD kinase. Biochem. Biophys. Res. Commun. 84, 595-602   DOI   ScienceOn
14 Lukas, T. J., Iverson, D. B., Schleicher, M. and Watterson, D. M. : Structural characterization of a higher plant calmodulin, SPINACIA OLERACEA. Plant Physiol. 75, 788-795 (1984)   DOI   ScienceOn
15 Snedden, W. A. and Fromm, H. : Calmodulin as a versatile calcium signal transducer in plants. New Phytologist. 151, 35-66 (2001)   DOI   ScienceOn
16 Bouche, N. Yellin, A. Snedden, W. A. and Fromm, H. : Plant-specific CaM-binding proteins. Ann. Rev. Plant Biol. 56, 435-466 (2005)   DOI   ScienceOn
17 Alschul, S. F, Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. : Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389-3402 (1997)   DOI   ScienceOn
18 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. : The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25(24), 4876-4882 (1997)   DOI   ScienceOn
19 Kumar, S., Tamura, K. and Nei, M. : MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief in Bioinform. 5(2) 150-163 (2004)   DOI   ScienceOn
20 Yamauchi, T. : Neuronal Ca2_/CaM-Dependent Protein Kinase II—Discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol. Pharm. Bull., 28(8) 1342-1354 (2005)   DOI   ScienceOn
21 Sung, W. S. and Lee, D. G. : In Vitro Candidacidal action of korean red ginseng saponins against Candida albicans. Biol. Pharm. Bull. 31(1), 139-142 (2008)   DOI   ScienceOn
22 Nam, M. H., Kim, S. I. ,Liu, J. R., Yang, D. C., Lim, Y. P., Kwon, K. H., Yoo, S. J. and Park, Y. M. : Proteomic analysis of Korean ginseng (Panax ginseng C.A. Meyer). J. Chromatography. 815, 147-155 (2005)   DOI   ScienceOn
23 Heo, W. D., Lee, S. H., Kim, M. C., Kim, J. C., Chung, W. S., Chun, H. J., Lee, K. J, Park, C. Y., Park, H. C., Choi, J. Y. and Cho, M. J. : Involvement of specific CaM isoforms in salicylic acid-independent activation of plant disease resistance responses. Plant Biol. 96, 766–771 (1999)
24 Murashige, T. and Skoog, F. : A revised medium for rapid growth and bio assay with tobacco tissue cultures. Plant Physiol. 15, 473-499 (1962)   DOI