DOI QR코드

DOI QR Code

Overexpression of NtROS2a gene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice

시토신 탈메틸화 관련 NtROS2a 유전자 도입 형질전환벼의 건조스트레스 내성 증진

  • Choi, Jang Sun (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, In Hye (Department of Horticultural Life Science, Hankyong National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Jung, Yu Jin (Department of Horticultural Life Science, Hankyong National University) ;
  • Kang, Kwon Kyoo (Department of Horticultural Life Science, Hankyong National University)
  • 최장선 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이인혜 (국립한경대학교 원예생명과학과) ;
  • 조용구 (충북대학교 식물자원학과) ;
  • 정유진 (국립한경대학교 원예생명과학과) ;
  • 강권규 (국립한경대학교 원예생명과학과)
  • Received : 2016.09.27
  • Accepted : 2016.09.29
  • Published : 2016.09.30

Abstract

DNA methylation regulations gene expression, thus having pivotal roles in a myriad of physiological and pathological processes. In this study, the morphology and stress tolerance of transgenic rice overexpressing NtROS2a were determined. Transgenic plants exhibited less and shorter lateral shoots. Under various treatments, rice overexpressing NtROS2a showed alleviation of damage symptoms with higher survival rate. After drought and re-watering treatment, transgenic rice seedlings restored their normal growth. However, wild type plants could not be rescued. These findings indicate that overexpression of NtROS2a gene in rice seedlings can increase their tolerance to drought stresses.

DNA methylation은 무수히 많이 발생하는 생리적 및 병리적 측면의 과정에서 관련 유전자의 발현을 조절함으로써 중추적인 역할을 가지고 있다. 본 연구에서는 NtROS2a가 과발현된 형질전환 벼를 육성하고, 그들의 형태적 측면을 관찰하고 스트레스 내성을 검토하였다. 형질전환 식물체는 WT에 비하여 신초의 신장이 작게 나타났다. 저온 스트레스 처리 하에서 NtROS2a 형질전환 벼는 스트레스로 인한 생육 불량을 보였으나 건조 스트레스 처리 하에서는 WT보다는 높은 비율로 회복하여 생존하는 것을 확인할 수 있었다. 이러한 결과는 NtROS2a 유전자의 과발현으로 인해 벼가 건조 스트레스에 노출되면 내성을 증진시킨 것으로 생각된다.

Keywords

References

  1. Aguis F, Kapoor A, Zhu JK (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl. Acad. Sci. USA 103:11796-11801 https://doi.org/10.1073/pnas.0603563103
  2. Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant physiol 107:1049-1054
  3. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48-54
  4. Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5:995-998 https://doi.org/10.4161/psb.5.8.12227
  5. Choi CS, Hiroshi Sano (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase- like protein in tobacco plants. Mol. Genet. Genomics 277(5):589-600 https://doi.org/10.1007/s00438-007-0209-1
  6. Choi JS, Lee IH, Jung YJ, Kang KK (2016) DNA microarray analysis of RNAi plant regulated expression of NtROS2a gene encoding cytosine DNA demethylation. J Plant Biotechnol 43:231-239 https://doi.org/10.5010/JPB.2016.43.2.231
  7. Dawood M, Taie H, Nassar R, Abdelhamid M, Schmidhalter U (2014) The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. S. Afr. J. Bot. 93:54-63 https://doi.org/10.1016/j.sajb.2014.03.002
  8. Demming-Adams B, Adams WWIII (1992) Photoprotection and other response of plants to high light stress. Annu Rev Plant Physiol Plant Mol Bio 43:599-626 https://doi.org/10.1146/annurev.pp.43.060192.003123
  9. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622-627 https://doi.org/10.1126/science.1190614
  10. Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg R, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495-506 https://doi.org/10.1016/j.cell.2005.12.034
  11. Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930 https://doi.org/10.1016/j.plaphy.2010.08.016
  12. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635-638 https://doi.org/10.1016/j.cell.2007.02.006
  13. Gomes F, Oliva M, Mielke M, Almeida A, Aquino L (2010) Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci. Hortic. 126:379-384 https://doi.org/10.1016/j.scienta.2010.07.036
  14. Gong Z, Morales-Ruiz T, Ariza RR, Roldan-Arjona T, David L, Zhu JK (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803-814 https://doi.org/10.1016/S0092-8674(02)01133-9
  15. Huh JH, Bauer MJ, Hsieh TF, Fischer RL (2008) Cellular programming of plant gene imprinting. Cell 132:735-744 https://doi.org/10.1016/j.cell.2008.02.018
  16. Jung YJ, Nou IS, Kang KK (2014) Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed. Biotech. 2(4):370-379 https://doi.org/10.9787/PBB.2014.2.4.370
  17. Kishor P, Hong Z, Miao G, Hu C, Verma D (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108:1387-1394 https://doi.org/10.1104/pp.108.4.1387
  18. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204-220 https://doi.org/10.1038/nrg2719
  19. Lee HJ, Abdula SE, Jee MG, Jang DW, Cho YG (2011) Highefficiency and Rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. J Plant Biotechnol 38:251-257 https://doi.org/10.5010/JPB.2011.38.4.251
  20. Lee IH, Choi JS, Marjohn N, Cho YG, Kang KK, Jung YJ (2015) Regulation of abiotic stress response through NtROS2a-mediated demethylation in tobacco. Plant Breed. Biotech. 3(2):108-118 https://doi.org/10.9787/PBB.2015.3.2.108
  21. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915-926 https://doi.org/10.1016/0092-8674(92)90611-F
  22. Lichtentaler HK (1995) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4-14
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  24. Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macias MI, Ariza RR, Roldan-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl. Acad. Sci. USA 103:6853-6858 https://doi.org/10.1073/pnas.0601109103
  25. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089-1093 https://doi.org/10.1126/science.1063443
  26. Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H (1990) Asingle treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and under methylation of genomic DNA. Molecular Genetics and Genomics 220:441-447 https://doi.org/10.1007/BF00391751
  27. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27-58 https://doi.org/10.1111/j.1469-8137.1993.tb03863.x
  28. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 11:607-620
  29. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE et al. (2006) Genome-Wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189-1201 https://doi.org/10.1016/j.cell.2006.08.003
  30. Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert HJ, Shi H, Yun DJ, Bressan RA (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc. Natl. Acad. Sci. USA 105:4945-4950 https://doi.org/10.1073/pnas.0801029105

Cited by

  1. Current status and prospects of epigenetic information in sexual reproductive processes of plants vol.44, pp.1, 2017, https://doi.org/10.5010/JPB.2017.44.1.019