Browse > Article
http://dx.doi.org/10.4014/jmb.1510.10049

Construction of an Efficient Mutant Strain of Trichosporonoides oedocephalis with HOG1 Gene Deletion for Production of Erythritol  

Li, Liangzhi (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Yang, Tianyi (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Guo, Weiqiang (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Ju, Xin (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Hu, Cuiying (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Tang, Bingyu (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Fu, Jiaolong (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Gu, Jingsheng (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Zhang, Haiyang (School of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.4, 2016 , pp. 700-709 More about this Journal
Abstract
The mitogen-activated protein kinase HOG1 (high-osmolarity glycerol response pathway) plays a crucial role in the response of yeast to hyperosmotic shock. Trichosporonoides oedocephalis produces large amounts of polyols (e.g., erythritol and glycerol) in a culture medium. However, the effects of HOG1 gene knockout and environmental stress on the production of these polyols have not yet been studied. In this study, a To-HOG1 null mutation was constructed in T. oedocephalis using the loxP-Kan-loxP/Cre system as replacement of the targeted genes, and the resultant mutants showed much smaller colonies than the wild-type controls. Interestingly, compared with the wild-type strains, the results of shake-flask culture showed that To-HOG1 null mutation increased erythritol production by 1.44-fold while decreasing glycerol production by 71.23%. In addition, this study investigated the effects of citric acid stress on the T. oedocephalis HOG1 null mutants and the wild-type strain. When the supplementation of citric acid in the fermentation medium was controlled at 0.3% (w/v), the concentration of erythritol produced from the wild-type and To-HOG1 knockout mutant strains improved by 18.21% and 21.65%, respectively.
Keywords
Erythritol; gene knockout; HOG pathway; polyols; Trichosporonoides oedocephalis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jovanoviæ B, Mach RL, Mach-Aigner AR. 2014. Erythritol production on wheat straw using Trichoderma reesei. AMB Express 4: 34.   DOI
2 Kayingo G, Wong B. 2005. The MAP kinase HOG1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology 151: 2987-2999.   DOI
3 Kim SY, Park SS, Jeon YJ, Seo, JH. 1996. Analysis of fermentation characteristics for production of erythritol by Candida sp. Kor. J. Food Sci. Technol. 28: 935-939.
4 Kobayashi Y, Yoshida J, Iwata H, Koyama Y, Kato J, Ogihara J, Kasumi T. 2013. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. J. Biosci. Bioeng. 115: 645-650.   DOI
5 Lawrence CL, Botting CH, Antrobus R, Coote PJ. 2004. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol. Cell. Biol. 24: 3307-3323.   DOI
6 Li LZ, Zhang HX, Fu JL, Hu C, Zheng YY, Qiu YX. 2012. Enhancement of ribitol production during fermentation of Trichosporonoides oedocephalis ATCC 16958 by optimizing the medium and altering agitation strategies. Biotechnol. Bioprocess Eng. 17: 236-241.   DOI
7 Ma DM, Li RY. 2013. Current understanding of HOG-MAPK pathway in Aspergillus fumigatus. Mycopathologia 175: 13-23.   DOI
8 Maeda T, Takekawa M, Saito H. 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269: 554-558.   DOI
9 McClean MN, Hersen P, Ramanathan S. 2011. Measuring in vivo signaling kinetics in a mitogen-activated kinase pathway using dynamic input stimulation. Methods Mol. Biol. 734: 101-119.
10 Moon HJ, Jeya M, Kim IW, Lee JK 2010. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 86: 1017-1025   DOI
11 Pfaffl MW. 2001. A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res. 29: e45.   DOI
12 Röper H, Goossens J. 1993. Erythritol, a new raw material for food and non-food applications. Starch 45: 400-405.   DOI
13 Ryu YW, Park CY, Park JB, Kim SY, Seo JH. 2000. Optimization of erythritol production by Candida magnoliae in fed-batch culture. J. Ind. Microbiol. Biotechnol. 25: 100-103.   DOI
14 Saburo C, Toshiro O. 1999. Mutant strain of Trichosporonoides oedocephalis. US Patent US5916797.
15 Schaber J, Adrover MÀ, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, et al. 2010. Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur. Biophys. J. 39: 1547-1556.   DOI
16 Veiga-da-Cunha M, Santos H, Van Schaftingen E. 1993. Pathway and regulation of erythritol formation in Leuconostoc oenos. J. Bacteriol. 175: 3941-3948.   DOI
17 Wach A, Brachat A, Pohlmann R, Philippsen P. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808.   DOI
18 Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P. 2010. The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol. Biol. Cell 21: 3080-3092.   DOI
19 Westfall PJ, Ballon DR, Thorner J. 2004. When the stress of your environment makes you go HOG wild. Science 306: 1511-1512.   DOI
20 Wojda I, Alonso-Monge R, Bebelman JP, Mager WH, Siderius M. 2003. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology 149: 1193-1204.   DOI
21 Yang LB, Zhan XB, Zheng ZY, Wu JR, Gao MJ, Lin CC. 2014. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 151: 120-127.   DOI
22 Yamazaki MF, Yamazaki C, Muranaka T, Koseki Y, Okamoto N. 1999. Production of ribitol. Japanese Patent JP11137285.
23 Yoo SR, Seo CS, Kim OS, Shin HK, Jeong SJ. 2015. Anti-adipogenic and antioxidant effects of the traditional Korean herbal formula samchulgeonbi-tang: an in vitro study. Int. J. Clin. Exp. Med. 8: 8698-8708.
24 Yoshida J, Kobayashi Y, Tanaka Y, Koyama Y, Ogihara J, Kato J, et al. 2013. Complementary function of mitogen-activated protein kinase HOG1 from Trichosporonoides megachiliensis in Saccharomyces cerevisiae under hyperosmotic stress. J. Biosci. Bioeng. 115: 127-132.   DOI
25 Chen RE, Thorner J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773: 1311-1340.   DOI
26 Baudier KM, Kaschock-Marenda SD, Patel N, Diangelus KL, O’Donnell S, Marenda DR. 2014. Erythritol, a non-nutritive sugar alcohol sweetener and the main component of Truvia®, is a palatable ingested insecticide. PLoS One 9: e98949.   DOI
27 Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329-3330.   DOI
28 Cheetham J, MacCallum DM, Doris KS, da Silva Dantas A, Scorfield S, Odds F, et al. 2011. MAPKKK-independent regulation of the Hog1 stress-activated protein kinase in Candida albicans. J. Biol. Chem. 286: 42002-42016.   DOI
29 Chung YS, Lee M. 2013. Enotoxicity assessment of erythritol by using short-term assay. Toxicol. Res. 29: 249-255.   DOI
30 De Troostembergh MP, Debonne IA, Obyn WR. 2002. Process for producing and recovering erythritol from culture medium containing the same. US Patent 6440712.
31 Fink SC, Brosemer RW. 1973. Comparatives tudies on glycerol-3-phosphate dehydrogenase in bees and wasps. Arch. Biochem. Biophys. 158: 19-29.   DOI
32 Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxp marker cassetes for Cremediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30: e23.   DOI
33 Ghezelbash GR, Nahvi I, Emamzadeh R. 2014. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49. Curr. Microbiol. 69: 149-157.   DOI
34 Ghezelbash GR, Nahvi I, Malekpour A. 2014. Erythritol production with minimum by-product using Candida magnoliae mutant. Prikl. Biokhim. Mikrobiol. 50: 324-328.
35 Gietz RD, Woods RA. 2006. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol. Biol. 313: 107-120.
36 Hersen P, McClean MN, Mahadevan L, Ramanathan S. 2008. Signal processing by the HOG MAP kinase pathway. Proc. Natl. Acad. Sci. USA 105: 7165-7170.   DOI
37 Ishizuka H, Wako K, Kasumi T, Sasaki T. 1989. Breeding of a mutant of Aureobasidium sp. with high erythritol production. J. Ferment. Bioeng. 68: 310-314.   DOI