• Title/Summary/Keyword: stress function method

Search Result 866, Processing Time 0.023 seconds

A method of determining flow stress and friction factor using an inverse analaysis in ring compression test (링압축시험에서 역해석을 이용한 유동응력과 마찰상수 결정법)

  • Choi, Y.;Kim, H.K.;Cho, H.Y.;Kim, B.M.;Choi, J.C.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.483-492
    • /
    • 1998
  • An inverse analysis been applied to obtain the flow stress of the material. In this method, a ring-shaped specimen is compressed between two flat tools. This procedure employs, as the object function of inverse analysis, the balance of measured loads and reaction forces calculated by using rigid-plastic finite element method. The balance is explicit scalar function of flow stress which is a function of some unknown constants. For minimizing the balance, Newton-Raphon scheme is used. The friction factor, m, between flat tools and the specimen is determined by using friction area-divided method. The proposed method allows an accurate identification by avoiding the usual assumptions made in order to convert experimental measures into stress-strain relation. In this paper, the proposed method is numerically tested. A commercial pure aluminum was selected, as an example, to apply the method and the results are compared with stress-strain relation obtained by experiments.

Analysis of Bridging Stress Effect of Polycrystalline aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석)

  • 손기선;이선학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.583-589
    • /
    • 1996
  • In this study a new analytical model which can describe the relationship between the bridging stress and microstructure has beenproposed in order to investigate the microstructural effect on the R-curve behavior in polycrystalline aluminas since the R-curve can be derived via the bridging stress function. In the currently developed model function the distribution of grain size is considered as a microstructural factor in modeling of bridging stress function and thus the bridging stress function including three constants PM, n, and Cx, can be established analytically and quantitatively. The results indicate that the n value is closely related to the grain size distribution thereby providing a reliability of the current model for the bridging stress analysis. Thus this model which explains the correlation of the bridging stress distribution and microstructual parame-ters is useful for the systematic interpretation of microfracture mechanism including the R-curve behavior in polycrystalline aluminas.

  • PDF

A study on the improvement method of the stress field analysis in a domain composed of dissimilar materials (이종재료로 구성된 영역의 응력장 해석 개선방안 연구)

  • Song, Kee-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1844-1851
    • /
    • 1997
  • Displacement fields and interface stresses are obtained by modifying the potential energy functional with a penalty function which enforces the continuity of stresses at the interface of two-materials. Based on the displacement field and the interface stresses, a new methodology to generate a continuous stress field over the entire domain including the interface of the dissimilar materials has been proposed by combining the L$^{2}$ projection method of stress-smoothing and the Loubignac's iterative method of improving the displacement field. Stress analysis was carried out on two examples which are made of highly dissimilar materials. As a result of the analysis, it is found that the proposed method provides improved continuity of the stress field over the entire domain as well as predicting accurate nodal stresses at the interface. In contrast, the conventional displacement-based finite element method provides significant stress discontinuties at the interfaces. In addition, it was found that the total strain energy evaluated from the improved continuous stress field converge to the exact value as increasing the number of iterations in the proposed method.

Self-differentiation, Family Function and Stress Level in High School Students (고등학생의 자아분화 정도 및 가족기능과 스트레스 수준에 대한 연구)

  • Kim, Chung-Youb;Jo, Hyun-Sook
    • Child Health Nursing Research
    • /
    • v.14 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the relationship between high school students' self-differentiation, family function and their level of stress. Method: A questionnaire which consisted of questions on general characteristics of the high school students, and 36 questions on self-differentiation, 17 questions on family function, and 37 questions on level of stress was used to collect the data. Participants were 201 second grade high school students from Bucheon City. Descriptive statistics, T-test, ANOVA, correlation and multiple regression were used with SPSS 10.0 to analyze the data. Results: The mean scores for self-differentiation, family function, and levels of stress were 3.27, 3.39, and 2.61 respectively. The relationship between self-differentiation and level of stress revealed a significant negative correlation. The relationship between self-differentiation and family function showed a significant positive correlation. The relationship between family function and stress level showed a significant negative correlation. Conclusion: The results of the study show that variation in level of stress was related to family regression, recognition/emotional function, family projection, role recognition and emotional support and emotional cutoff which together explained 40.9% of the variance in level of stress.

  • PDF

Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites (직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.

Effects of Shot Peening on Crack Growth Resistance in Carburized Gears (침탄치차의 쇼트피닝처리가 크랙진전억제에 미치는 영향)

  • 류성기;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3227-3235
    • /
    • 1994
  • This paper deals with an evaluation of the residual stress due to shot peening induced in a carburized gear tooth and its application to the fatigue crack propagation problem. A practical method is proposed on the basis of the assumption that the residual stress is caused by the difference of volume expansion in the case and the core, and the influence of both the reduction of retained austenite and the strain due to shot peening are considered. The evaluated residual stress is close to the measured stress, though the surface stress is rather overestimated. The stress intensity factor is computed by the influence function method, and it is shown that the factor is decreased by the residual stress in shot peened gear tooth. The shot peening is fairly effective to the reduction of fatigue crack growth rate. The crack propagation is simulated and the resistance due to shot peening is quantitatively demonstrated and discussed.

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Impact of Self-esteem, Family Function and Social Support on Stress in Undergraduate Students (자아존중감, 가족기능 및 사회적 지지가 대학생의 스트레스에 미치는 영향)

  • Ha, Ju-Young
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.17 no.2
    • /
    • pp.259-266
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate self-esteem, family function, and social support which might influence stress in college students. Method: Data were collected from October 15 to December 20, 2007 when 411 students completed a questionnaire which included Self-esteem scale, Family APGAR questionnaire, Multidimensional Scale of Perceived Social Support and Global Assessment of Recent Stress scale. The collected data was analyzed with the SPSS Win 14.0 statistics program. Results: The scores for stress showed significantly negative correlations with the scores for self-esteem (r= -.394, p<.001), family function (r= -.215, p<.001), and social support (r= -.249, p<.001). Self-esteem, family function and social support by friends were significant predictors and accounted for 18.5% of the variance in stress in undergraduate students. Conclusion: Future stress management programs for undergraduate students should be developed to reinforce self-esteem, family function and social support by friends.

A Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Lee, Sang-Ju;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.495-500
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity. Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

  • PDF

Mixed-Mode Stress intensity Factors for Elliptical Corner Cracks in Mechanical Joints by Weight Function Method (가중함수법에 의한 기계적 체결부에 존재하는 타원형 모서리균열의 혼합모드 응력확대계수)

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.703-713
    • /
    • 2001
  • Mechanical joints such as bolted or riveted joints are widely used in structural components and the reliable determination of the stress intensity factors for corner cracks in mechanical joints is needed to evaluate the safety and fatigue life. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical corner cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. The extended form of the weight function method for two-dimensional mixed-mode to three-dimensional is presented and the number of terms in weight function is determined by comparing the results for the different number of terms. The amount of clearance is an important factor in evaluating the severity of elliptical corner cracks in mechanical joints and even horizontal crack normal to the applied load is under mixed-mode in the case that clearance exists.