• Title/Summary/Keyword: stress drop parameter

Search Result 22, Processing Time 0.021 seconds

The Qualitative Evaluation of Seismic Characteristics using the KMA Seismological Bulletin (1978-2001) (기상청 지진관측보고(1978-2001)를 이용한 지진 특성의 정성적 평가)

  • 박동희;연관희;최원학;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.12-19
    • /
    • 2002
  • A high frequency level of Fourier amplitude relates with stress drop and seismic moment. When we can not use this relation owing to absence of digital earthquake data, stress drop and seismic moment can be determined from Peak Ground Velocity(PGV) and felt area. We have qualitatively evaluated the seismic characteristics using PGV, and Magnitude from the well determined felt area in seismological records of Korea(1978~2001) by Korea Meteorological Administration(KMA). Observed relations between felt area and magnitude in the Korean Peninsula are explained by attenuation(Q), and stress drops comparing with the previous researches on stress parameter. This results are preliminary work for the study of stress parameter using the relationship of high frequency lavel, PGV, and felt area.

  • PDF

Experimental and numerical analysis of fatigue behaviour for tubular K-joints

  • Shao, Yong-Bo;Cao, Zhen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.639-652
    • /
    • 2005
  • In this paper, a full-scale K-joint specimen was tested to failure under cyclic combined axial and in-plane bending loads. In the fatigue test, the crack developments were monitored step by step using the alternating current potential drop (ACPD) technique. Using Paris' law, stress intensity factor, which is a fracture parameter to be frequently used by many designers to predict the integrity and residual life of tubular joints, can be obtained from experimental test results of the crack growth rate. Furthermore, a scheme of automatic mesh generation for a cracked K-joint is introduced, and numerical analysis of stress intensity factor for the K-joint specimen has then been carried out. In the finite element analysis, J-integral method is used to estimate the stress intensity factors along the crack front. The numerical stress intensity factor results have been validated through comparing them with the experimental results. The comparison shows that the proposed numerical model can produce reasonably accurate stress intensity factor values. The effects of different crack shapes on the stress intensity factors have also been investigated, and it has been found that semi-ellipse is suitable and accurate to be adopted in numerical analysis for the stress intensity factor. Therefore, the proposed model in this paper is reliable to be used for estimating the stress intensity factor values of cracked tubular K-joints for design purposes.

Estimation of Source parameters of South Korean Earthquakes (국내 지진의 지진원 변수 추정)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.28-35
    • /
    • 2000
  • The quality factor and the seismic source parameters such as the $\chi$ corner frequency and the stress drop were estimated from the small-to-medium instrumental earthquake data in south Korea. The Q facter with 95% confidence level ranges from 1519 to 2158. The regression equation of $\chi$in terms of epicentral distance R, is obtained as $\chi$=0.006717+0.00015R. And the stress drop is estimated as 50 bar which is similar to the previous results carried out by independent researchers. Artificial ground motions were simulated using the estimated earthquake parameter values and compared with real earthquake, The simulated response spectrum is very similar to real one.

  • PDF

Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips (플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

Board Level Drop Simulations and Modal Analysis in the Flip Chips with Solder Balls of Sn-1.0Ag-0.5Cu Considering Underfill (언더필을 고려한 Sn-1.0Ag-0.5Cu 조성의 솔더볼을 갖는 플립칩에서의 보드레벨 낙하 및 진동해석)

  • Kim, Seong-Keol;Lim, Eun-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.225-231
    • /
    • 2012
  • Drop simulations of the board level in the flip chips with solder joints have been highlighted for years, recently. Also, through the study on the life prediction of thermal fatigue in the flip chips considering underfill, its importance has been issued greatly. In this paper, dynamic analysis using the implicit method in the Finite Element Analysis (FEA) is carried out to assess the factors effecting on flip chips considering underfill. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard is modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. Modal analysis is simulated to find out the relation between drop impact and vibration of the board system.

An Experimental Study on Effects of Soot Loading and Mass Flow Rate on Pressure Drop and Heat Transfer in Catalyzed Diesel Particulate Filter (촉매 코팅 DPF의 soot loading과 유량 변화에 따른 압력강하 및 열전달에 관한 실험적 연구)

  • Cho, Yong-Seok;Noh, Young-Chang;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.72-78
    • /
    • 2007
  • A diesel particulate filter causes progressive increase in back pressure of an exhaust system due to the loading of soot particles. To maintain the pressure drop caused by DPF under proper level, a regeneration process is mandatory when excessive loading of soot is detected in the filter. It is a major reason why the relation between the amount of soot and the pressure drop in a DPF becomes crucial. On the other hand, pressure drop varies with not only the soot loading but also conditions of exhaust gas such as mass flow rate. Therefore, the relation among them becomes complicated. Furthermore, the characteristics of heat transfer in a DPF is another crucial parameter in order for the filter to avoid thermal crack during regeneration period. This study presents characteristics of pressure drop under various conditions of soot loading and mass flow rate in catalyzed diesel particulate filter. This study also shows characteristics of heat transfer in DPF when high temperature gas flows into the filter. Experiments reveal that the soot loading and mass flow rate affect characteristics pressure drop independently. Experiments also indicate that the amount of coating material has little influence on pressure drop with changes in soot loading and mass flow rate. However, increased catalyst coating may lead to the improved heat transfer which is efficiency to reduce thermal stress of the filter.

Estimation of Spectrum Decay Parameter χ and Stochastic Prediction of Strong Ground Motions in Southeastern Korea (한반도 남동부에서 부지효과를 고려한 스펙트럼 감쇠상수 χ 추정 및 강지진동의 추계학적 모사)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.59-70
    • /
    • 2003
  • We estimated the spectrum decay parameter $\chi$ and the stress parameter ($\Delta$$\sigma$) in southeastern Korea. Especially, we propose a procedure to compute site-independent $\chi$$_{q}$ and dependent $\chi$$_{s}$ values, separately, This procedure is to use the coda normalization method for the computation of site independent Q or corresponding $\chi$$_{q}$ value as the first step followed by the next step, the computation of $\chi$$_{s}$ values for each site using the given $\chi$$_{q}$ value evaluated at the first step, For the estimation of stress parameter, we used seismic data monitored from three earthquakes occurred near Gyeongju in 1999 with the method of Jo and Baag, In addition, we simulated strong ground motion using the $\chi$ value and the stress parameter, In this case, we calculated the $\chi$ value with conventional method. The $\chi$ value of 0.016+0.000157R and the stress parameter of 92-bar was applied to the stochastic simulation, At last, we derived seismic attenuation equation using results of the stochastic prediction, and compared these results with some others reported previously.ported previously.

Two Linked-Robot Actuated by ER-Valve Systems (ER-Valve 작동기를 이용한 Two link Robot의 위치제어)

  • 이호근;김휘동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.165-170
    • /
    • 2001
  • This paper presents performance analysis of two-linked robot system using ER (electro rheological) valve actuators. An ER fluid consisting of soluble chemical starches (particles) and silicone oil is made and its field-dependent yield stress is experimentally distilled using electro-viscometer. From this result, the design parameters of ER valve are determined. Based on parameter study, an ER valve system is designed and manufactured. Furthermore, the measured pressure drop is compared with predicted one obtained from the Bingham model. Following the evaluation of field-dependent pressure drop of ER valve, a two-linked robot system with two ER valve actuators is then constructed and its governing equation of motion is derived. From this equation, PID controller is established. Consequently, control performances of the proposed two-linked robot system featuring ER valve are evaluated.

  • PDF

Study on Localized Corrosion Cracking of Alloy 600 using EN-DCPD Technique (EN-DCPD 방법을 이용한 Alloy 600 재료의 국부부식균열 연구)

  • Lee, Yeon-Ju;Kim, Sung-Woo;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.93-101
    • /
    • 2013
  • The object of this work is to establish an electrochemical noise(EN) measurement technique combined with a direct current potential drop(DCPD) method for monitoring of localized corrosion cracking of nickel-based alloy, and to analyze its mechanism. The electrochemical current and potential noises were measured under various conditions of applied stress to a compact tension specimen in a simulated primary water chemistry of a pressurized water reactor. The amplitude and frequency of the EN signals were evaluated in both time and frequency domains based on a shot noise theory, and then quantitatively analyzed using statistical Weibull distribution function. From the spectral analysis, the effect of the current application in DCPD was found to be effectively excluded from the EN signals generated from the localized corrosion cracking. With the aid of a microstructural analysis, the relationship between EN signals and the localized corrosion cracking mechanism was investigated by comparing the shape parameter of Weibull distribution of a mean time-to-failure.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구)

  • Jung, Je-Won;Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.33-39
    • /
    • 2006
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 3 Kyoungju region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy In frequency domain. Average stress drop of 3 events and local attenuation parameter ${\kappa}$ were estimated to about 48-bar and 0.0312 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 417 and 0.83. ${\kappa}$ values are much higher than that of EUS, even though smaller than that of WUS. All these values resultant from this study show that there are differences in some parameters of other studios due to differences in the governing equation. of acceleration motions