• Title/Summary/Keyword: stress domain

Search Result 711, Processing Time 0.023 seconds

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.

Boundary Element Analysis of Stress Singularity at the Interface Corner of Viscoelastic Adhesive Layer Bonded Between Rigid Adherends (강체모재들을 결합하고 있는 점탄성 접착재층의 계면모서리에서 발생하는 응력특이성의 경제요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • This paper concerns the stress singularity at the interface corner of the viscoelastic adhesive layer bonded between rigid adherends, subjected to a uniform transverse tensile strain. The characteristic equation is derived in the Laplace transformed space, following Williams, and the transformed characteristic equation is inverted analytically into real time space for the viscoelastic model considered here. The order of the singularity is obtained numerically. The time-domain boundary element method is employed to investigate the nature of stresses along the interface. Numerical results show that the order of the singularity increases with time while the free-edge stress intensity factors are relaxed with time.

  • PDF

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.

ER Stress-Induced Jpk Expression and the Concomitant Cell Death

  • Kim Hye Sun;Chung Hyunjoo;Kong Kyoung-Ah;Park Sungdo;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • A Jopock (Jpk), a trans-acting factor associating with the position-specific regulatory element of murine Hoxa-7, has shown to have a toxicity to both prokaryotic and eukaryotic cells when overexpressed. Since Jpk protein harbors a transmembrane domain and a putative endoplasmic reticulum (ER)-retention signal at the N-terminus, a subcellular localization of the protein was analyzed after fusing it into the green fluorescent protein (GFP): Both N-term (Jpk-EGFP) and C-term tagged-Jpk (EGFP-Jpk) showed to be localized in the ER when analyzed under the fluorescence microscopy after staining the cells with ER- and MitoTracker. Since ER stress triggers the ER-stress mediated apoptosis to eliminate the damaged cells, we analyzed the expression pattern of Jpk under ER-stress condition. When MCF7 cells were treated with the ER-stress inducer such as DTT and EGTA, the expression of Jpk was upregulated at the transcriptional level like that of Grp78, a molecular chaperone well known to be overexpressed under ER-stress condition. In the presence of high concentration of ER-sterss inducer (10 mM), about 70 (DTT) to $95\%$ (EGTA) of cells died stronly expressing ($10\~12$ fold) Jpk. Whereas at the low concentration ($0.001\~1.0\;mM$) of the inducer, the expression of Jpk was increased about 2.5 (EGTA) to 5 fold (DTT), which is rather similar to those of ER chaperone protein Grp78. These results altogether indicate that the ER-stress upregulated the expression of Jpk and the excess stress induces the ER-stress induced apoptosis and the concomitant expression of Jpk.

  • PDF

Analysis of Semi-Infinite Problems Subjected to Body Forces Using Nonlinear Finite Elements and Boundary Elements (물체력이 작용되는 반무한영역문제의 비선형유한요소-경계요소 조합해석)

  • Hwang, Hak Joo;Kim, Moon Kyum;Huh, Taik Nyung;Ra, Kyeong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 1991
  • The underground structure, which has infinite or semi-infinite boundary conditions, is subjected by body forces and in-situ stresses. It also has stress concentration, which causes material nonlinear behavior, in the vicinity of the excavated surface. In this paper, some methods which can be used to transform domain integrals into boundary integrals are reviewed in order to analyze the effect of the body forces and the in-situ stresses. First, the domain integral of the body force is transformed into boundary integral by using the Galerkin tensor and divergence theorem. Second, it is transformed by writing the domain integral in cylindrical coordinates and using direct integration. The domain integral of the in-situ stress is transformed into boundary integral applying the direct integral method in cylindrical coordinates. The methodology is verified by comparing the results from the boundary element analysis with those of the finite element analysis. Coupling the above boundary elements with finite elements, the nonlinear behavior that occurs locally in the vicinity of the excavation is analyzed and the results are verified. Thus, it is concluded that the domain integrals of body forces and in-situ stresses could be performed effectively by transforming them into the boundary integrals, and the nonlinear behavior can be reasonably analyzed by coupled nonlinear finite element and boundary element method. The result of this research is expected to he used for the analysis of the underground structures in the effective manner.

  • PDF

Transcriptomic analysis of 'Campbell Early' and 'Muscat Bailey A' grapevine shoots exposed to freezing cold stress (영하의 저온에 노출된 'Campbell Early'와 'Muscat Bailey A' 포도나무 신초의 전사체 비교)

  • Kim, Seon Ae;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • To understand the responses of grapevines in response to cold stress causing the limited growth and development, differentially expressed genes (DEGs) were screened through transcriptome analysis of shoots from 2 grapevine cultivars ('Campbell Early' and 'Muscat Baily A') kept at -$2^{\circ}C$ for 4 days. In gene ontology analysis of DEGs from 'Campbell Early', there were 17,424 clones related with biological process, 28,954 with cellular component, and 6,972 with molecular function genes in response to freezing temperature. The major induced genes included dehydrin xero 1, K-box region and MADS-box transcription factor family protein, and MYB domain protein 36, and inhibited genes included light-harvesting chlorophyll B-binding protein 3, FASCICLIN-like arabinoogalactan 9, and pectin methylesterase 61 in 'Campbell Early' grapevines. In gene ontology analysis of DEGs from 'Muscat Baily A', there were 1,157 clones related with biological process, 1,350 with cellular component, and 431 with molecular function gene. The major induced genes of 'Muscat Baily A' included NB-ARC domain-containing disease resistance protein, fatty acid hydrozylase superfamily, and isopentenyltransferase 3, and inhibited genes included binding, IAP-like protein 1, and pentatricopeptide repeat superfamily protein. All major DEGs were shown to be expressed differentially by freezing temperature in real time-PCR analysis. Protein domain analysis using InterPro Scan revealed that ubiquitin-protein ligase was redundant in both tested grapevines. Transcriptome profile of shoots exposed to cold can provide new insights into the molecular basis of tolerance to low-temperature in grapevines, and can be used as resources for development new grapevines tolerant to coldness.

Isolation and Characterization of a cDNA Encoding Two Novel Heat-shock Factor OsHSF6 and OsHSF12 in Oryza Sativa L.

  • Liu, Jin-Ge;Yao, Quan-Hong;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Xu, Fang;Zhu, Hong
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.602-608
    • /
    • 2005
  • As a crucial transcription factor family, heat-shock factors were mainly analyzed and characterized in tomato and Arabidopsis. In this study, we isolated two putative heat shock factors OsHSF6 and OsHSF12 that interact specifically with heat-shock element (HSE) from Oryza sativa L by yeast one-hybrid method. The full-length cDNA of OsHSF6 and OsHSF12 have 1074bp and 920bp open reading frame (ORF), respectively. Analysis of the deduced amino acid sequences revealed that OsHSF6 was a class A heat shock factor (HSF) with all the conserved sequence elements characteristic of heat stress transcription factor, while OsHSF12 was a class B HSF with C-terminal domain (CTD) lacking of AHA motif. Bioinformatic analysis showed that the sequences and structures of two HSFs' DNA binding domain (DBD) had a high similarity with LpHSF24. The results of RT-PCR indicated OsHSF6 gene was expressed immediately after rice plants exposure to heat stress, and the transcription of OsHSF6 gene accumulated primarily in immature seeds, roots and leaves. However, we did not find the transcription of OsHSF12 gene in different organs and growth periods. Our results implied that OsHSF6 might be function as a HSF regulating early expression of stress genes in response to heat shock, and OsHSF12 might be act as a synergistic factor to regulate the expression of down-stream genes.

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

Study on the Core Loss Improvement of SiFe Plate in Relation with Laser Pulse Width in the Laser Scribing (레이저 스크라이빙에 있어서 레이저의 펄스폭에 따른 규소강판의 코어손실 개선 연구)

  • Ahn, Seung-Joon;Park, Chul-Geun;Ahn, Seong-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.320-324
    • /
    • 2005
  • The core loss of $3\%$ SiFe is strongly dependent on silicon content, impurities, permeability, and domain structure of the SiFe. Domain refining has been proved to be very good method for reduction of core loss in high permeability grain oriented SiFe, and laser scribing is well-blown as an effective and industrially important method of domain refinement. In this work, magnetic domain refinement has been carried out by using a pulsed Nd : YAG laser, and the core losses have been measured and analyzed to and optimal parameters of the laser treatment. The laser hem was focused with a spot size of $100{\mu}m$ and pulse energy of 10${\~}$35mJ and the lines were scribed with a period of ${\~}$5mm. The core loss was improved up to $17\%$ with 30 ns-Nd : YAG laser beam in $3\%$ SiFe.

Correlation between sensory processing pattern and stress response in university students (대학생의 감각 처리 유형과 스트레스 반응과의 상관관계)

  • Choi, Yu-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.195-201
    • /
    • 2021
  • This study analyzed the correlation between sensory processing types and stress responses in university students. A survey was conducted on 99 university students in Gyeonggi-do and Chungcheong-do. The survey contents consisted of Adolescent/Adult Sensory Profile and Stress Response Inventory. Data were analyzed using SPSS version 21.0 for descriptive statistics and Pearson correlation. As a result of the study, low-registration and sensory sensitivity were all correlated except for aggression of stress response, and sensory avoiding was all correlated of stress response. Sensory seeking was net related to any domain of stress response. Based on the results of this study, taking into account the correlation between sensory processing types and stress responses, it is recommended for convergence with other treatments to develop self-regulation strategies for coping with stress in university students.