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An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding
Incorporating Constrained Boundary Conditions
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There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding
process, mostly from viewpoint of residual stresses. In this study, the temperature distribution,
transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of
rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer
analysis was first performed by taking account of the temperature-dependent material properties
and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses
and distortion analysis that incorporates the constrained boundary condition of the two
dimensional solution domain to get the three dimensional size effect of the plate. The
constrained boundary conditions adopted in this study were the constant displacement condition
over the whole two dimensional section for axial movement in the welding direction, and the
force boundary condition for rotational movement of the domain around the axis of the welding
direction. It could be revealed that the theoretical predictions of the angular distortion have an
improved agreement with the experimentally obtained data presented in the previous study.
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1. Introduction

The uneven temperature distribution
produced during welding gives rise to
incompatible strains which in turn result in
distortion and self equilibrating residual stress
remaining in the structure after it has cooled
down to the ambient temperature. The residual
stress and distortion adversely affect the
service behavior of welded structures including
their brittle fracture, stress corrosion cracking,
fatigue and buckling characteristics. In order to
reduce, prevent, and/or relieve them, it is
necessary to know the details of the thermal
and mechanical response of weldments.
* Therefore the prediction of the residual stress
and distortion is very important.

Several investigators have contributed to the
solution of the welding residual stress problem
in past years'™. In the most of these studies,
the powerful finite element method was used in
the two dimensional condition, especially plane
strain condition for thick plates. The predicted
results and the experimental ones have been
used for solving the practical problems relating
to residual ‘stress. However, it is still difficult
to treat the distortion caused by welding in
actual structures, because only a few primitive
experimental and analytic studies are present
on the two dimensional problem of the angular
distortion. Moreover, the analysis of welding
distortion has been hindered by the difficulty of
solving the problem which has a nonlinear
three dimensional thermo-elasto-plastic
behavior. The cost of the inelastic analysis is
particularly high in three dimensional
calculations. Analytic studies previously
performed on the angular distortion of plates
have mainly used the two dimensional model
with the plane strain condition in the welding
direction in which the size effect of the plate
can not be appropriately considered **.

In this paper, a finite element model was
described for analyzing the temperature,
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thermal stress and distortion. Particular
emphasis was placed on the development of a
with
constrained boundary conditions for calculating

realistic two dimensional model
the thermal stress and angular distortion. The
transient heat conduction problem was first
solved, and the uncoupled thermal stress and
angular distortion of the solution domain
having two constrained boundary conditions
were analyzed based on the calculated
temperature distribution. Because the heat
transfer problem can be simplified as a two
dimensional one in the welding of a plate by
assuming that the welding speed is sufficiently
high relative to the heat conduction rate of the
material, the analysis was carried out for the
section of unit length located in the mid-length
of the plate. '

The analysis of the thermal stress and
angular distortion was performed on the same
section having a unit length which was
enforced with the constant displacement plane
strain condition in the welding direction and
the force boundary condition applied to the
bottom of the section for compensating the size
effect of the three dimensional plate. With
these boundary conditions, the thermo-elasto-
plastic analysis was carried out to predict the
thermal stress and angular distortion of the
plate in the bead-on-plate welding. The
material subjected to the welding thermal cycle
was postulated to behave mechanically as an
isotropic, elasto-plastic and strain-hardening
continuum obeying the von Mises yield function
and Prandtl-Reuss flow rule. The computed
results of the angular distortion were then
compared with the previous experimental data
obtained by bead-on-plate welding of mild steel
plates using the gas metal arc welding(GMAW)
process”.

2. Finite element formulation for the
thermo-elasto-plastic analysis

2.1 Heat transfer analysis
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The transient heat flow in a three
dimensional isotropic solid bounded by a
surface without internal heat generation is
governed by the energy conservation equation
in the Cartesian coordinate system(x,y,z) as
follows.

3qx qu aqz_ iz
_(ax+ay+az—pc2t )

where T is the temperature, p the density, c
the specific heat, ¢ the time, and g\, g, g. a
component of the heat flow rate vector.

The weak form of eqn(1) can be derived and
rearranged with integration by parts. Applying
the Galerkin' s method to the weak form, the
governing isoparametric finite element equation
of the nonlinear heat transfer problem can be
written in matrix form as follows.

ar
(1S JHIK T INT =R 4R ) @

The coefficient matrix (C) of the time
derivative of the nodal temperature is the
element capacitance matrix. The coefficient
matrices( K . ) and [ K , } are the element
stiffness matrices relating to the conduction
and convection respectively. The vectors { &, }
and { R » } are the heat load vectors arising
from the specified surface heating and surface
convection respectively. For solving this
ordinary differential equation of the nonlinear
transient problem, the backward difference
scheme was used in this study.

2.2 Thermo-elasto-plastic analysis

Considering the principle of virtual work for

an Iisoparametric finite element, the
equilibrium of an element at time ¢ + 4¢ can be

expressed using tensor notation as follows®.

f :4»41S'j 6:+dtel_jdv=t+drR (3)

where the components of the stress S and
infinitesimal strain e at time t+ 4¢ are
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referred to the configuration at time ¢, ““R is
the corresponding external virtual work, the
subscript ¢t denotes the reference time, the
superscript t+ 4t the current time, right
subscript i, j the components of the Cartesian
vectors and tensors, v is the volume of an
element, and 6 means the variation. By
incremental decompositions, the stress at time
t+ 4t can be expressed as follows.

FS=T S, 4)

where ‘t; is the stress component at time ¢,
and S without left superscript indicates a finite
increment. The total infinitesimal strain tensor
at time t+ 4t equals the strain increment from
time ¢t because of the updated configuration
and can be expressed as follows.

S =te = u )2 (5)

where u; is the i-th component of the
displacement increment, and the comma
denotes the differentiation with respect to the
coordinate following.

The total strain increment is given as the
summation of increments in the elastic, plastic,
and thermal strain and the equivalent initial
strain due to the change of the elastic

property.

zeii=reije‘+ze‘ilp'+re:?+xe‘;’ (63)

er=4t4 (6b)

xe'g:HAra a8 T _tot'T v (6C)
F] CE -1

ei= =L pmar 6

where ,e;, ,e5 and ,e are the components of
the elastic, plastic and thermal strain
increment tensors respectively, ,ejis the
component of the equivalent initial strain
tensor, ais the thermal expansion coefficient,
C * is the elastic constitutive tensor, 4 a

positive constant, and T is the deviatoric
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stress.

Then the stress increment can be expressed
as follows.
S,;=""CE (e, eh- % e) @

The von Mises yield function for non-
isothermal, isotropic hardening was used for
the calculation of 4. With the condition that
the stress-temperature state remains on the
yleld surface during the plastic straining and
eqn(7), 4 can be obtained”. Substituting
eqn(4) and eqn(7) into eqn(3) results in the
following finite element equations.

J. B C edv=- [ Brodvr [ BCi(e-e-e v ®)

where (B) is the total strain-displacement
transformation matrix.

To solve the eqn(8), the modified Newton
Raphson method was used. Using a difference
in the strain increments between two
progressive iteration steps, eqn(8) can be
rewritten as follows.

(K4 u=- | Brsody ©)
tu(1+1) = ﬂ(') +A‘u (1) (10)
1=0,1,2,

where the stiffness matrix ( K) = J,B'CBdv, .u
is the increment of displacement at a nodal
point, and the right superscript I denotes the
iteration step (I = O refers to the condition at

time t and the iteration continues until du =
0).

3. Process modeling and calculations

The finite element formulation performed for
the thermo-elasto-plastic problem was applied
to the analysis of the thermal stress and
angular distortion of a plate caused by the
bead~on-plate GMA welding. Figure 1(a)
shows the schematic configuration of the
welding process and plate.
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Fig. 1 Solution domain and finite element
mesh used for analysis of heat transfer,
thermal stress and angular distortion

3.1 Heat transfer analysis

The calculation of the transient temperature
distribution was based on the quasi-stationary
condition, which is developed when the heat
source is moving at a constant speed on a
regular path, and the end effects resulting from
either the initiation or termination of the heat
source are neglected. This problem is,
therefore, reduced to finding the two
dimensional unsteady temperature field at a
section normal to the weld line. The two
dimensional thermal analysis at the section of
x=0, normal to the direction of weld line, was
thus considered in the present work. The
energy transfer from the arc to the workpiece
top surface was simulated by the heat flux of
the Gaussian distribution. At other surfaces,
the natural convection can be considered. At
the center line of the workpiece, on which the
arc moves, the. temperature gradient in the
transverse direction can be neglected according
to the symmetry of the heat flow.
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3.2 Thermal stress and distortion analysis

Because of its simplicity and easiness for
modeling, the plane strain boundary condition
along the welding direction in weldment has
been widely used for analyzing the thermal
stress of the welding process. However, the
model using the plane boundary condition
could not satisfactorily describe the thermo-
mechanical behavior in the real situation
except that the workpiece would be set up
between two rigid constraint walls in the weld
direction®. In many real situations, however,
_ the length of the workpiece along the
longitudinal direction would be finite. For
predicting the thermal stress and angular
distortion of the workpiece by the two
dimensional analysis more realistically, the
following two boundary conditions were
proposed in this study.

3.2.1 Constant displacement plane strain
boundary condition to the weld line

In this proposed model, the sliced solution
domain was considered for calculations and its
FEM mesh was as shown in Fig. 1(b), where
only the right half of the plate was used
because of its symmetrical geometry. Along the
longitudinal direction one element was meshed
in the solution domain to allow the change of
the total strain in the welding direction. Figure
2 shows the corresponding boundary condition.

X
Rigid body

d
o

O (@] O
j X-Y plane ’T"‘

() [0 (@) v _

N, S
o Y-Z plane X
l Rigid body

Lz z

Fig. 2 Constant displacement boundary

condition for analysis of thermal stress
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To accept this sliced solution domain, the
thermo-mechanical values were assumed to be
constant along the longitudinal direction.

In this model, the distribution of the total
longitudinal displacement increment u, in the
solution domain was used as the boundary
condition, which can also be called plane strain
condition with constant displacement”. A real
constant u, making the resultant force along
the longitudinal direction zero was considered
as the boundary value. To determine u, in the
present time, an iteration procedure was
needed for satisfying the following equilibrium
condition in the welding direction.

L FE=0 : (11)

3.2.2 Force boundary condition for rotational

movement around weld line

In actual three-dimensional plate, angular
distortion of an heated zone would be
constrained by the dimensional stiffness of the
other part of the plate. In this study, a
simplified model was proposed based on an
understanding of the constraints generated by
the welding process to improve the accuracy of
the two dimensional distortion analysis. This
model is not based on a rigorous theory, in
which the force boundary condition in the form
of the dimensional stiffness of the surrounding
plate was applied to the bottom of the solution
domain for approximating three dimensional
phenomena.

If the degree of constraint can be calculated
for a particular section of the plate during
welding, two dimensional analysis of the
angular distortion is possible by adapting the
dimensional stiffness as the boundary condition
in the shape of the force. When a fully
cor_ls’craining condition is enforced, the degree
of the constraint can be set as S =1.

Figure 3(a) shows the location of the solution
domain and heat source which starts to travel
on the domain. When heat source travels on a
unit length, the change of the moment(M ) at
the mid-section can be expected as shown in
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Fig. 3(b) with solid line. In this condition, the  represented as follows.

(s I . . ~
part within the length ! having the positive x P, =p-§ 15)

directional moment behind the heat source
promotes the CW distortion of the solution
domain, while the other part hinders this
movement. Therefore, at this stage the degree
of constraint S; can be represented in the first
approximation as follows.

L-i
§=—

: 12)
When x: is less than I, i.e., the moving
distance of the heat source from the solution
domain is less than [, this phenomena is
sustained because the length of the section C1
is constant and the section also moves together
with the heat source.

When x, is larger than ! as shown in Fig.
3(c), the solution domain and section A3 start
to move in the CCW direction due to cooling.
To this movement, the heated region behind
the solution domain makes no hindering action,
because it moves in the same direction. The
section A2 having the length ! is in the CW
movement and the unheated section Al has
the stiffness effect to the movement of the
domain. In this case, the degree of constraint
S: can be represented as follows.

L2-(x ,-D)
S, =———whenl<x, <WHL2 (13)
L2
S,=0 whenx, = +L/2 14)

where, when x, is larger than L/2, x. means the
elapsed time, because the welding is already ended.

In the simplified model of this study the
reaction force was assumed as a dimensional
stiffness of a plate enforced to a heated
section. For obtaining the modified stiffness in
the two dimensional solution domain under a
constrained condition, the reaction force at the
bottom of the solution domain should vary
according to the degree of constraint. Figure
3(d) shows the relationship of the reaction
force between the fixed boundary condition(P,)
and the constrained case(P;), which can be

RBISHREGE $1748 B, 19994 2A

Therefore, for the analysis of the movement
of the solution domain the reaction force of the
fixed boundary condition at each time step
should be previously determinéd.
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(a) Trend of angular distortion during heating of
solution domain
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(c) Trend of angular distortion during cooling of
solution domain
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(d) Reaction force with fixed boundary condition and
constrained one

Fig. 3 Conceptional drawings for force
boundary condition
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3.3 Material and simulation details

The incremental analysis of the thermo-
elasto-plastic stress was carried out by using
the finite element mesh. Proper modeling of
the temperature, thermal stress and angular
distortion in the region close to the weld center
line requires a relatively fine grid. In the
numerical modeling, the effective radius of arc
was assumed to be 10mm, the welding speed
7mm/s, the arc efficiency 0.7, the current
281A, the voltage 31V, and the net heat input
Q@ (=arc efficiency x heat input) 6100J/s'?.
Tsuji, et al.'” showed how physical and
mechanical properties of the mild steel change
with the temperature. In the analysis of this
the specific heat, the thermal
conductivity, the elastic modulus, the yield

study,

strength, and the plastic modulus of the steel
that change as the temperature changes were
taken into account. The width of the workpiece
for the simulation was 200mm, while the slice
thickness was chosen to be lmm. For acquiring
the different heat input parameter(@ /D %), 6,
8, 10, 12 and 14mm of the plate thickness
were adopted. With these thickness, the heat
input parameters become 16944, 9531, 6100,
4236 and 3112 J/s/cm®. The effect of the
deposited metal was neglected.

For iteratively calculating the current
displacement increment(u(n+1)), the first
iteration was carried out with the displacement
increment of the previous time step(u(n)). The
strain and displacement, and then the stress (S
(n+1,I)) from the strain. With these results the
next displacement increment (u (n+1, I +1))
can be calculated at the current iteration stép by
the finite element equation with the modified
Newton Raphson method. When the difference of
displacement increment between the successive
iterations (du (I+1)) is less than 107, the force
equilibrium was examined by enforcing a
constant displacement condition in the welding
direction. In the finite element equation, the
reaction force was included for applying the force
boundary condition. :
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4. Results and discussion
4.1 Heat transfer analysis

Figure 4(a) shows the thermal history at
several points on the surface of the 10mm
thick plate heated by a Gaussian heat source.
The points within 5mm from the weld center
line were rapidly heated up and rapidly cooled
down. The point 10mm away from the weld
line shows a more or less slow heating and
cooling history, while the temperature level is
relatively low. At the point apart larger than

1600.0 -
1400.0 -

Distance from
1200.0 weld center y, mm

Temperature T, T

10° 10* 10° 10° 10° 10°

10 10?
Welding time t, sec

(a) Temperature history(Thickness: 10mm)

15.0 200 250 300
6 T T

§ Unit: ¢
N 100

(b) Contours of m‘aximﬁm temperature(Thickness: 10mm)

Unit: €

{¢) Contours of maximum temperature(Thickness: 6mm)

Fig. 4 Temperature history at various
distance from weld center line on
surface of solution domain and
contours of maximum temperature
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25mm, the maximum temperature was less
than 2007C. This result implies that in welding
the rapidly heated and cooled region occurs
locally, while most of the surrounding plate is
little affected by the heat source.

In Fig. 4(b), the maximum temperature
occurring during the whole welding process is
shown with the contour lines on the section of
the solution domain. In the region within about
2.8mm depth and 5.3mm width, the maximum
temperature was higher than 1500%C, which
would cause melting of the base plate. In the
region apart more than 15mm from the heat
" source, the maximum temperature of 300C
was nearly uniformly distributed along the
depth direction. In Fig. 4(c), when the
thickness is 6mm(Heat input parameter is
16944J/s/cm?), the melting zone becomes
larger so that penetration is greater than 3mm
at which the neutral axis of the plate locates.
Moreover, the temperature is more evenly
distributed.

4.2 Thermal stress and angular distortion
analysis

4.2.1 Constant displacement plane strain
boundary condition to welding direction

In the thermo-elasto-plastic analysis of the
thermal stress and distortion of the plate
during welding, the three dimensional
computation takes an awfully long time. For
this reason the two dimensional analysis is
widely applied with the assumption that the
plate is sufficiently long to adopt the plane
strain condition. The result of the residual
stress distribution at the top surface of the
solution domain was shown with the dashed
line in Fig. 5 for the plane strain condition.
The same result can be found in the previous
study”. With this assumption, however, the
self equilibrium of the force in the welding
direction can not be acquired by the section
itself, and the unheated region of the plate has
no strain and stress change during welding.
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Therefore, after welding, tensile stress would
be distributed over all of the heated region.

500

N

<

o
I

Constant displacement
. ( boundary

10.0

Residual stress o,, kg/mm’
[N}
S
=

' 0.0 1 L i
0.0 10.0 20.0 30.0 40.0

Distance from weld center y, mm

-100L
Fig. 5 Comparison of longitudinal residual
stress distributions between con-
strained boundary and rigid one
(Thickness: 10mm)

For the constrained boundary having a
constant displacement in the welding direction,
the residual stress distribution at the top
surface of the solution domain is shown with
the solid line in Fig. 5. The tensile stress was
distributed around the weld line, while its
maximum value was greater than the base
metal yield stress with no strain hardening at
room temperature. In the remaining part of the
plate, to be in force equilibrium state, the
small negative residual stress was distributed.
This result can be considered as more realistic
with respect to the previous experimental
study”. In force balancing with the region of
large tensile stress, even some part of heated
region of the plate also had to have
compressive stresses, and this makes much
differences in the two compared results around
20mm away from weld center.

4.2.2 Force boundary condition to rotational
movement around weld line

The change of the x -directional moment at y

=0 section is shown in Fig. 6(a) versus

elapsed time after welding. The moment of the

constrained condition was calculated from the
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moment of the fixed condition by considering
the stiffness change during welding. From
these results, it can be revealed that when the
reverse movement occurs, the constraint
becomes much smallier than in the fixed
condition. Consequently there is practically no
constraint to the movement of the solution
domain after 11 seconds passed.

600.0 (
400.0
g
L 200.0
4
>
= 0.0
g 197 10°
3 L
§ -200.0f Co! tralne(? bottom
condition
400.0 Fixed bottom/
i condition
-600.0L Welding time t, sec
{a) Moment change
2001 Welding time t, sec
16.0 L_ .04
o //p\ \, ® 110
1201 PN T
A S ;
80 / NN o883

1 163.3

4.0
0.0
-4.0

Transient reaction force P, kg

-8.0
-12.0

Distance from weld center y, mm

-16.0 -

(b) Transient reaction force in fixed boundary condition

Fig. 6 Moment change at y=0 section and
transient reaction force at bottom of
domain (Thickness: 10mm)

For the solution domain fixed at the bottom
surface, the reaction force against the thermal
force by the welding heat source was computed
along the y axis, and its result presented in
Fig. 6(b). In the part near the weld center, a
relatively large reaction force occurs, while its
direction is reversed with the elapsed time.
Small reaction force exists, if the area is more
than 50mm away from the weld center, which
is probably due to the fact that the
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displacement is absorbed mainly in the region
near the weld center. The reaction force was

recalculated for the constrained condition by
(15)

~eqn, and this recalculated reaction force at

each time step was used for the analysis of the
stress and distortion.

Figure 7(a) shows the distribution change of
the transient thermal stress during welding.
The zone of the compressive stress is
broadened in the first stage of heating, but
soon changed into the tensile stress state, as
the highly heated part is cooled fast. However,
the stress is more or less lower than that of
the surrounding region and a large thermal
strain would be converted to plastic strain,
because the yield strength and Young s
modulus are not fully recovered yet.

50.0 [
40.0
300
20.0
10.0

0.0
-10.0
-20.0
-30.0

Welding time t, sec

A 1044
:1.10
1407
1883
: residual

Transient thermal stress o, kg/mm®

Distance from weld center y, mm

-40.0 L
(a) Transient stress distribution

50.0

400 L Constant displacement boundary
w T N, T Free bottom boundary
E 300 Constrained bottom boundary
E;
&
o 20.0 1
g
&
= 100+
S
2 1 t AL )
g %9 00 200 ~_300 400

-100 F Distance from weld center y, mm

(b) Comparison of longitudinal residual stress distri-
butions between free boundary and nstrained one

Fig. 7 Longitudinal transient and residual
stress distribution(Thickness: 10mm)

The residual stress distributions at the top
surface of the solution domain of the
constrained and free boundary condition in the
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z direction, when the domain has the constant 147 N
displacement boundary condition in the x 12r / \\
direction, are shown in Fig. 7(b). In the case of 1.or // ‘\
the constrained boundary condition, the g g':: /// \ Free bottom boundary
maximum residual stress is somewhat different E 0:4 L J \\\
from that of the free boundary condition, which E 0.2+ ,// \\
is considered to be the result of the different i 0.0
residual angular distortion. Contours of the £702
equivalent plastic strain are shown in Fig. ‘;’:g':_ g{;’;ﬁgﬁ;ed bottom A\ S~———==""7""
8(a),(b) for the case of the free and o8l
constrained boundary conditions respectively. 1.0 - Welding time t, sec
In the case of the constrained boundary -1.2L

condition, the constraining effect resulted in a
little larger plastic strain.
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(a) For free boundary condition
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(b) For constrained boundary condition

unit: x 107

Fig. 8 Contours of effective residual plastic
strain(Thickness: 10mm)

The deflection change of the plate during

welding is plotted in Fig. 9(a) with the elapsed
time. In the case of the plane strain analysis,
the solution domain can be freely deflected
during heating, so that the thermal deflection
is larger than that from the analysis with the
constrained boundary condition. The large
deflection during heating, which is recovered
during cooling, results in a small value of the
residual deflection, Fig. 9(b).
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(a) Comparison of changes of maximum angular
distortion between fixed boundary condition and
constrained one

10
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g (radian) =11.0x 10°
<
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'g?' 04 ///’
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! ] ! J
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(b) Comparison of experimentally measured residual
distortion with numerical predictions

Fig. 9 Changes of maximum angular distortion
and residual distortion versus elapsed
time (Thickness: 10mm)

With the constrained boundary condition,
however, the deflection during heating is much
more constrained, and consequently the final
deflection is larger than that from the plane
strain analysis. By comparing the calculated
and experimental results, it can be revealed
that the two dimensional analysis with the
constrained boundary condition can predict the
deflection more accurately than that with the
free boundary condition. The reason why some
difference exists, however, will be discussed
later.

The welding distortion was calculated for
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various heat input parameters and compared
with the previous experimental results” in
Fig. 10.
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Fig. 10 Comparison of experimentally

measured residual distortion with
numerical prediction for various heat
inputs

The predicted result for the free boundary
condition showed that the residual distortion
increases slowly with the increment of the heat
input parameter. This can be explained with
Fig. 9(a), in which the free boundary condition
during cooling approaches its residual shape
quickly, before the heat is fully conducted and
consequently the temperature evenly
distributed. However, the actual plate in
welding would constrain the section during
cooling by its dimension, so that there is some
time delay to achieve the residual shape of the
section. This phenomenon can be predicted by
considering the constrained boundary
conditions as shown in Fig. 9(a). The angular
distortion increases gradually as the heat input
parameter increases, which is caused through
the larger plastic strain by a larger heat input
parameter. However, the angular distortion
decreases with increasing heat input parameter
when the heat input parameter exceeds a
certain value, which was considered as the
result that the temperature distribution in the

thickness direction becomes more even for the
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increasing heat input parameter. But with the -
free boundary condition, this phenomenon
could not be obtained within the region of heat
input parameter considered. In this figure,
however, the predicted result considering the
constrained boundary still shows some
difference from the experimental one. This is
probably due to the fact that the temperature
distribution can be
approximately without considering the

predicted only
convection effect of the molten pool in the
melted zone, and also due to the non-rigorous
nature of the adopted rotational boundary
condition.

In the comparison of the penetration profiles
in GMAW acquired by calculation and
experiment, the experimental result showed a
deeper penetration than the predicted one by
the conduction model, which could be
considered as the result of the convective
actioni of the molten pool during welding'”. In
smaller heat input parameters, for example,
when the thickness is 10mm(namely, the heat
input parameter is 6100J/s/cm®), a deeper
penetration in the experiment can produce a
larger contraction in the upper side of the base
plate, so that the residual distortion would be
larger than the predicted one.. By larger heat
input parameters, for example, 16944J/s/cm’
(thickness is 6mm), however, the actual
penetration can be to be deeper than the
neutral axis, so that the experimental residual
distortion might be smaller than the predicted
one. Therefore, for a more accurate prediction
of the angular distortion during' welding, the
convection of the molten pool should be
in the
temperature distribution.

considered calculation of the

5. Conclusion

For the analysis of the thermal stress and
angular distortion caused in the bead-on-plate
welding, a thermo-elasto-plastic finite element
analysis was performed on the two dimensional
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section of the plate with the constant
displacement boundary condition and the
constrained boundary condition to consider the
size effect of the plate. The conclusions can be
summarized as follows.

1) The constant displacement boundary
condition in the welding direction made the two
dimensional solution domain satisfy the self-
equilibrium condition of the force by itself, in
which the compressive longitudinal residual
stress as well as the tensile stress could be
produced in the base plate.

2) The force boundary condition enforcing a
reaction force at the bottom of the solution
domain by introducing the degree of constraint
enabled the two dimensional analysis to
improve the accuracy of predicting the angular
distortion phenomena during bead-on-plate
welding.

3) The residual angular distortion computed
with the proposed model showed an improved
agreement with the experimental one.
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