• Title/Summary/Keyword: streptavidin

Search Result 97, Processing Time 0.03 seconds

Development of Immuno-Analytical System for Microbial Cells by using Dot-Blotter (Dot-Blotter 진공 포획방식에 의한 미생물세포 면역분석시스템의 개발)

  • 목락선;하연철;윤희주;백세환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.82-90
    • /
    • 1999
  • In order to eventually fabricate an analytical system for infectious microorganisms, we synthesized major immunochemical components, utilized them for the construction of model system, and investigated an assay concept for bacterial whole cells. For the preparation of system components, a polyclonal antibody, against Salmonella thompson as model analyte, purified by immuno-affinity chromatography was used to chemically link to streptavidin or an enzyme, horseradish peroxidase(HRP). The antibody and streptavidin was modified with sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate and N-succinimidyl-3-[2-pyridyldithio]propionate(subsequently activated by dithiotheritol), respectively. The modified components were reacted to synthesize antibody-streptavidin conjugates which were then purified on a two-layer chromatography column of diaminobiotin gel and Sephadex G-100. For antibody-HRP conjugates, HRP molecules were activated by $NalO_4$ oxidation and then coupled to immunoglobulin. After stabilizing with ($NaCNBH_3$, the conjugates were purified by size exclusion chromatography on Biogel A5M column. To devise a model system, such produced components were combined with a dot-blotter in which a nitrocellulose membrane($12{\mu}m$ pre size) with immobilized biotin was already located. The analyte (S. thompson cells) was reacted with the both antibody conjugates in a liquid phase, and the complexes formed were captured on the membrane surfaces by applying vacuum in the bottom compartment of the blotter to invoke biotin-streptavidin reaction. Under optimal conditions, the system enabled to identify the analytical concept for bacterial whole cells, and the lower limit of detection was approximately $1{\mu}g/m{\ell}$($10^5-10^6$ cells/m$m{\ell}$). The controlling factors were the concentrations of each antibody conjugate that caused agglutination in the presence of analyte as they increased.

  • PDF

Synthesis of Polyrotaxane-biotion Conjugates and Surface Plasmon Resonance Analysis of Streptavidin Recognition

  • Ooya, Tooru;Kawashima, Tomokatsu;Yui, Nobuhiko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.293-300
    • /
    • 2001
  • A polyrotaxane-biotin conjugate was synthesized and its interaction with streptavidin measured using surface plasmon resonance(SPR) detection. A biodegradable polyrotaxane in which ca, 22 molecules of ${\alpha}$-cyclodextrina(${\alpha}$-CDs) were threaded onto a poly(ethylene oxide) chain(M$\sub$n:4,000) capped with benzyloxycarbonyl-L-phenylalanine was conjugated with a biotin hydorazide and 2-aminoethanol after activing the hydroxyl groups of ${\alpha}$-CDs in the polyrotaxane using N, N'-carbonyldiimidazole. The results of the high-resolution $^1$H-nyclear lmagnetic resonance($^1$H-NMR)spectra and gel permeation chromatography of the conjugate showed that ca, 11 biotin molecules were actually introduced to the polyrotaxane scaffold. An SPR analysis showed that the binding curves of the biotin molecules in the conjugate on the streptavidin-deposited surface changed in a concentration dependent manner, indicating that the biotin in the conjugate was ac-tually recognized by streptavidin. The association equilibrium constant(K$\sub$a/) of the interaction be-tween the conjugate and steptavidin tetramer was of the order 10$\^$7/. These results suggest that polyrotaxane is useful for scaffolds as a polymeric ligand in biomedical fields.

  • PDF

Biodistribution Study of $^{99m}Tc$-Labeled Succinic Acid-Conjugated Low pI Avidin (낮은 동전점을 갖는 $^{99m}Tc$ 표지 Succinic Acid 결합 Avidin의 생체내분포에 관한 연구)

  • Jeong, Jae-Min;Paik, Chang-H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.285-292
    • /
    • 1993
  • Avidin과 biotin의 높은 결합력을 이용하여 종양 영상을 개선하는 방법이 많이 연구되고 있다. 본 실험에서는 이러한 목적으로 쓰기 위하여 적당한 $^{99m}Tc$ 표지 avidin을 제조하였다. Avidin을 표지하기 위하여 우선 $^{99m}Tc$과 안정한 킬레이트를 형성할 수 있는 benzoylmercaptoacetyltriglycine (Bz-MAG3)과 biocytin을 화학적으로 결합시킨 Bz-MAG3-biocytin을 합성하였다. 이 화합물을 Tc-99m으로 표지시켜 avidin 또는 streptavidin을 1:1로 섞어 줌으로서 Tc-99m으로 표지된 avidin과 streptavidin을 제조하였다. 이들의 생쥐 생체내 분포를 조사한 결과 avidin의 경우 높은 간(56.6%, 10min)과 신장(28.5%, 10min) 축적을 보였고 streptavidin의 경우 높은 신장 축적 (28.9%, 21hr)을 보였다. Avidin의 높은 정상 조직 축적을 줄이기 위하여 succinic acid를 결합시켜 등전점(pI)을 낮춘 다음 같은 실험을 하여 본 결과 신장 축적율은 pI가 $7.0{\sim}9.3,\;5.5{\sim}6.2,\;4.0{\sim}4.8$로 낮아졌을 경우 19.0%, 3.1%, 1.7%로 각각 떨어졌지만 간에의 축적은 pI 변화에 따른 상관성을 찾아 볼 수가 없었다. 체내 제거율을 측정하여 본 결과 pI를 변화시킨 avidin과 변화시키지 않은 avdin들은 반감기가 13.5에서 16.0시간 사이로 큰 차이점을 보이지 않았는데 streptavidin은 반감기 61.5시간 정도로 느리게 제거된다는 것을 알았다. 이 실험의 결과 1. Avidin을 $^{99m}Tc$-MAG3-biocytin으로 안정하게 표지할 수 있었고, 2. pI가 낮아진 avidin은 신장에의 축적율이 크게 감소되었으며, 3. $^{99m}Tc$으로 표지된 avidin과 streptavidin은 먼저 간으로 흡수된 후 대사된 다음 신장으로 배설된다는 사실을 알았다.

  • PDF

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis

  • Shon, Hyun Kyong;Son, Jin Gyeong;Lee, Kyung-Bok;Kim, Jinmo;Kim, Myung Soo;Choi, Insung S.;Lee, Tae Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.815-819
    • /
    • 2013
  • Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.

Ultra-thin Film Assembly of a Novel Biomaterial Containing Protein and Functionalized Polymer for Sensor Application

  • Lim, Jeong-Ok;Sohn, Byung-Ki;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.81-87
    • /
    • 1995
  • A novel biomaterial capable of incorporating biotinylated biomolecule has been synthesized. Our strategy is to biotinylate one-dimensional electroactive polymers and use a bridging streptavidin protein on Langmuir-Blodgett (LB) organized films. These copolymers are derivatized with long alkyl chains and biotin moieties to bind, respectively, to the hydrophobic surface and the biotinylated species, through the biotin and streptavidin complexation. We utilize the polymer assembly approach to attach a signal transducing biomolecule biotinylated phycoerythrin (B-PE) into this novel biomaterial by binding the unoccupied biotin binding sites on the bound streptavidin (4 sites total). The pressure-area isotherm of the protein injected monolayer showed area expansion. A characteristic fluorescent emission peak at 576nm was detected from the monolayer transferred onto a solid substrate. These observations demonstrated the promise of the organized thin polymer assemblies for their application to the sensor system.

  • PDF

Characterization of a Substance from Photobacterium damsela subsp. piscicida that Non-specifically Binds to Streptavidin

  • Jung Tae Sung;Kim D. Thompson;Adams Aelexandra;Oh Myung Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.52-63
    • /
    • 2000
  • Non-specific reaction has been a problem in doing, especially, research and diagnosis for infectious agents. Avidin-biotin-peroxidase complex (ABC) techniques has widely been used to amplify a reaction. Photobacterium damse1a subsp. piscicdia (formerly Pasteurella piscicida) exhibited a capacity to bind with streptavidin non-specifically. The band, estimated 26 K Da in Western blotted paper, was blocked with biotin but incompletely. In an attempt to explore an involvement of the non-specific substance in attaching piscine cells, cell attachment test performed using anti- Ph. d. subsp piscicida sera raised mouse and rabbit exhibited slightly blocking effects for Mediterranean (1736) and significantly for Japanese (Sp 92144) isolate. Biotin decreased the attachment ability significantly for Sp92144 but it was not effective to 1736. Both isolates showed greatly enhanced attachment ability with poly-L-lysin. The non-specific binding substance was contained in bacterial extracellular products (ECPs). The substance was able to purified with 2-imminobiotin affinity column, the purified substance appeared to have 4 bands in silver staining, and had a carbohydrate branch. This purified substance showed cytotoxic effects selectively between 5 piscine cell lines. Moreover, it stimulated rainbow trout macrophage in terms of reduction of cytochrome cas well as yeast phagocytosis, significantly.

  • PDF

A Study on Biomaterial Detection Using Single-Walled Carbon Nanotube Based on Interdigital Capacitors (인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브를 이용한 바이오 물질 검출에 관한 연구)

  • Lee, Hee-Jo;Lee, Hyun-Seok;Yoo, Kyung-Hwa;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.891-898
    • /
    • 2008
  • In this paper, we have studied on the possibilities of the biomaterial detection using single-walled carbon nanotube (SWNT) based on interdigital capacitors. For the four different configurations, such as interdigital capacitor, SWNT in the $5\;{\mu}m$ gap interdigital capacitor, biotinlated SWNT, and biotin and sreptavidin immobilization cases, the resonant frequency has been measured as 10.02 GHz, 11.02 GHz, 10.82 GHz, and 10.22 GHz, respectively. Assuming that the resonant frequency reflects the capacitance changes due to binding of two-different permittivity biomaterials, we have suggested an equivalent circuit model based on measured results, confirming the capacitance changes. For biotinlated SWNT and biotin-streptavidin immobilization cases, the capacitances are $C_b=0.55\;pF$ and $C_s=0.95\;pF$. In this work, we experimentally demonstrated that the specific biomaterial binding causes the capacitance change and therefore this gives rise to resonant frequency. In conclusion, we confirmed the sufficient possibility as CNT biosensor because an analyte biomaterial(streptavidin) binding arouses a considerable resonant frequency change.

Manufacturing Micrometer Scale Structures by an Optical Tweezers System Controlled by CyberGlove (가상장갑으로 제어되는 광핀셋 시스템을 이용한 마이크로 구조물의 제작)

  • Park, I.Y.;Lee, J.H.;Lee, Y.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.298-307
    • /
    • 2007
  • In recent years, researchers are actively investigating new methods that are applicable for manufacturing micrometer to nanometer scale structures. Among them, optical tweezers that can manipulate microscopic objects using a laser is receiving one of the key attentions. Optical tweezers have been used actively in the field of science. For example, for measuring mechanical characteristics in the scale of piconewtons or for manipulating and sorting large numbers of particles, bacteria, cells. etc. However, little works have been reported for "manufacturing" objects. In this paper, we present a new method for manufacturing micrometer scale structures using micrometer scale biotin coated polystyrene particles. Particles will be controlled with a user interface that utilizes a CyberGlove and glued together by the bonding force between biotin and streptavidin.

Enzyme-Linked, Biotin-Streptavidin Bacterial-Adhesion Assay for Helicobacter pylori Lectin-Like Interactions with Cultured Cells

  • Murillo, Guzman;Antonia, Maria;Ascencio, Felipe
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • A simple method for studying the lectin-like interactions between Helicobacter pylori and cultured human epithelial cell lines was developed using an enzyme-linked, biotin-streptavidin bacterial-adhesion assay. The present study suggests that this method is suitable for evaluating the participation of lectin interactions in the adhesion of H. pylori to cultured HeLa S3 and Kato III cells, both fixed and glycosidase-treated cells, as well as assessing glycoconjugated binding inhibition studies. The time-course and dose-dependent kinetics of the biotin-labeled H. pylori adhesion th the formaldehyde-fixed Hela S3 and Kato III cell lines exhibited saturation. In addition, the binding of the biotin-labeled H. pylori to the formaldehyde-fixed cultured cells was partially blocked by pre-incubation with glycoconjugates and polyclonal antibodies against a heparan sulfate binding protein from H. pylori.

  • PDF