DOI QR코드

DOI QR Code

A Study on Biomaterial Detection Using Single-Walled Carbon Nanotube Based on Interdigital Capacitors

인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브를 이용한 바이오 물질 검출에 관한 연구

  • Lee, Hee-Jo (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Hyun-Seok (Department of Physics, Yonsei University) ;
  • Yoo, Kyung-Hwa (Department of Physics, Yonsei University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • Published : 2008.08.31

Abstract

In this paper, we have studied on the possibilities of the biomaterial detection using single-walled carbon nanotube (SWNT) based on interdigital capacitors. For the four different configurations, such as interdigital capacitor, SWNT in the $5\;{\mu}m$ gap interdigital capacitor, biotinlated SWNT, and biotin and sreptavidin immobilization cases, the resonant frequency has been measured as 10.02 GHz, 11.02 GHz, 10.82 GHz, and 10.22 GHz, respectively. Assuming that the resonant frequency reflects the capacitance changes due to binding of two-different permittivity biomaterials, we have suggested an equivalent circuit model based on measured results, confirming the capacitance changes. For biotinlated SWNT and biotin-streptavidin immobilization cases, the capacitances are $C_b=0.55\;pF$ and $C_s=0.95\;pF$. In this work, we experimentally demonstrated that the specific biomaterial binding causes the capacitance change and therefore this gives rise to resonant frequency. In conclusion, we confirmed the sufficient possibility as CNT biosensor because an analyte biomaterial(streptavidin) binding arouses a considerable resonant frequency change.

본 논문에서는 인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브(single-walled carbon nanotube, SWNT)를 이용한 바이오 물질 검출에 관한 연구를 수행하였다. 먼저 인터디지털 커패시트의 경우, 다음으로 $5\;{\mu}m$ 틈 사이에 SWNT 경우, 그리고 SWNT 상에 biotin이 고정된 경우, 마지막으로 biotin과 streptavidin이 고정화된 경우, 공진 주파수는 각각 10.02 GHz, 11.02 GHz, 10.82 GHz, 10.22 GHz로 나타났다. 이러한 공진 주파수의 민감한 변화는 유전 상수값이 다른 두 바이오 물질이 결합함에 따라 커패시턴스 값이 달라질 것이라는 가정 하에, 측정된 결과를 근거로 등가회로를 구현함으로써 실제로 커패시턴스 값들이 달라짐을 확인할 수 있었다. SWNT 상에 biotin이 고정된 경우와 biotin과 streptavidin이 고정화된 경우, 커패시턴스 값은 각각 $C_b=0.55\;pF$, $C_s=0.95\;pF$으로 나타났다. 본 연구를 통해서, 탄소 나노 튜브상에 특정 바이오 물질간의 결합이 커패시턴스 값의 변화를 유발시키게 되고, 이로 인해서 공진 주파수가 변화됨을 실험적으로 증명하였다. 결론적으로, 제안된 바이오 센싱 소자는 표적 바이오 물질(streptavidin)이 결합할 때 큰 공진 주파수 변화를 일으킴으로 CNT 바이오센서로서 충분한 가능성이 있음을 확인하였다.

Keywords

References

  1. H. W. Kroto, J. R Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, 'C60: Buckminsterfullerene', Nature, vol. 318, pp. 162-163, Nov. 1985 https://doi.org/10.1038/318162a0
  2. S. Iijima, 'Helical microtubles of graphitic carbon', Nature, vol. 354, pp. 56-58, Nov. 1991 https://doi.org/10.1038/354056a0
  3. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, 'Fully sealed, high-brightness carbon-nanotube field-emission display', Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131, Nov. 1999 https://doi.org/10.1063/1.125253
  4. S. M. Lee, Y. H. Lee, 'Hydrogen storage in single- walled carbon nanotubes', Appl. Phys. Lett., vol. 76, no. 20, pp. 2877-2879, May 2002 https://doi.org/10.1063/1.126503
  5. J. Sander, R. Tans Alwin, M. Verschueren, and C. Dekker, 'Room-temperature transistor based on a single carbon nanotube', Nature, vol. 393, pp. 49-52, May 1998 https://doi.org/10.1038/29954
  6. S. Moonsub, J. Ali, W. S. K. Nadine, and H. Dai, 'Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors', J. Am. Chem. Soc., vol. 123, no. 5, pp. 11512-11513, Aug. 2001 https://doi.org/10.1021/ja0169670
  7. J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, 'Nanotube molecular wires as chemical sensors', Science, vol. 287, no. 5453, pp. 622-625, Jan. 2000 https://doi.org/10.1126/science.287.5453.622
  8. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, 'Extreme oxygen sensitivity of electronic properties of carbon nanotubes', Science, vol. 287, no. 5459, pp. 1801-1804, Mar. 2000 https://doi.org/10.1126/science.287.5459.1801
  9. S. Chopra, A. Pham, J. Galillard, A. Parker, and A. M. Rao, 'Carbon-nanotube-based resonant-circuit sensor for ammonia', Appl. Phys. Lett., vol. 80, no. 24, pp. 4632-4634, Jun. 2002 https://doi.org/10.1063/1.1486481
  10. S. Chopra, A. Pham, J. Gillard, and A. M. Rao, 'Development of RF carbon nanotube resonant circuit sensors for gas remote sensing applications', IEEE Intl. Microwave Symposium Digest, Jun. 2002
  11. H. J. Lee, J. G. Yook, 'Biosensing using split-ring resonators at microwave regime', Appl. Phys. Lett., vol. 92, May 2008(accepted)
  12. H. J. Lee, H. S. Lee, K. H. Yoo, and J. G. Yook, 'On the possibility of biosensors based on split- ring resonators', EuMW, Oct. 2008(accepted)
  13. M. Zhang, X. Huo, Q. Liang, Z. K. Tang, and P. C. H. Chan, 'High frequency characterization for the single-walled carbon nanotubes using S-parameters', IEEE Conference Nanotechnology, 2004
  14. I. Bahl, Lumped Elements for RF and Microwave Circuits, Artech House, Boston.London, 2003
  15. J. Wong, A. Chilkoti, and V. T. Moy, 'Direct force measurement of the streptavidin-biotin interaction', Bio. Eng., vol. 16, pp. 45-55, Dec. 1999
  16. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, 'Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization', J. Am. Chem. Soc., vol. 123, pp. 3838-3839, Jan. 2001 https://doi.org/10.1021/ja010172b
  17. 이희조, 이현석, 유경화, 육종관, '인터디지털 커패시트 기반의 단일벽 탄소 나노 튜브를 이용한 바이오 물질 검출에 관한 연구', 한국전자파학회 춘계 마이크로파 및 전파학술대회, 31(1), pp. 357-360, 2008년 5월

Cited by

  1. A Biomolecular Sensing Platform Using RF Active System vol.12, pp.4, 2012, https://doi.org/10.5515/JKIEES.2012.12.4.227
  2. Radio-frequency characteristics of graphene monolayer via nitric acid doping vol.78, 2014, https://doi.org/10.1016/j.carbon.2014.07.037