Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.3.815

Chemical Imaging Analysis of the Micropatterns of Proteins and Cells Using Cluster Ion Beam-based Time-of-Flight Secondary Ion Mass Spectrometry and Principal Component Analysis  

Shon, Hyun Kyong (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS))
Son, Jin Gyeong (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS))
Lee, Kyung-Bok (Division of Life Science, Korea Basic Science Institute (KBSI))
Kim, Jinmo (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS))
Kim, Myung Soo (Department of Chemistry, Seoul National University)
Choi, Insung S. (Department of Chemistry, KAIST)
Lee, Tae Geol (Center for NanoBio Convergence, Korea Research Institute of Standards and Science (KRISS))
Publication Information
Abstract
Micropatterns of streptavidin and human epidermal carcinoma A431 cells were successfully imaged, as received and without any labeling, using cluster $Au_3{^+}$ ion beam-based time-of-flight secondary ion mass spectrometry (TOF-SIMS) together with a principal component analysis (PCA). Three different analysis ion beams ($Ga^+$, $Au^+$ and $Au_3{^+}$) were compared to obtain label-free TOF-SIMS chemical images of micropatterns of streptavidin, which were subsequently used for generating cell patterns. The image of the total positive ions obtained by the $Au_3{^+}$ primary ion beam corresponded to the actual image of micropatterns of streptavidin, whereas the total positive-ion images by $Ga^+$ or $Au^+$ primary ion beams did not. A PCA of the TOF-SIMS spectra was initially performed to identify characteristic secondary ions of streptavidin. Chemical images of each characteristic ion were reconstructed from the raw data and used in the second PCA run, which resulted in a contrasted - and corrected - image of the micropatterns of streptavidin by the $Ga^+$ and $Au^+$ ion beams. The findings herein suggest that using cluster-ion analysis beams and multivariate data analysis for TOF-SIMS chemical imaging would be an effectual method for producing label-free chemical images of micropatterns of biomolecules, including proteins and cells.
Keywords
Chemical imaging; Protein and cell micropatterns; ToF-SIMS; PCA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pacholski, M. L.; Winograd, N. Chem. Rev. 1999, 99, 2977.   DOI   ScienceOn
2 Kumar, A.; Abbott, N. L.; Kim, E.; Biebuyck, H. A.; Whitesides, G. M. Acc. Chem. Res. 1995, 28, 219.   DOI   ScienceOn
3 Mrksich, M.; Whitesides, G. M. Trends. Biotechnol. 1995, 13, 228.   DOI   ScienceOn
4 Blawas, A. S.; Reichert, W. M. Biomaterials 1998, 19, 595.   DOI   ScienceOn
5 Makohliso, S. A.; Léonard, D.; Giovangrandi, L.; Mathieu, H. J.; Ilegems, M.; Aebischer, P. Langmuir 1995, 15, 2940.
6 Jin, G.; Tengvall, P.; Lundström, I.; Arwin, H. Anal. Biochem. 1995, 232, 69.   DOI   ScienceOn
7 Wadu-Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G. Langmuir 1999, 15, 8580.   DOI   ScienceOn
8 Yip, C. M.; Brader, M. L.; Frank, B. H.; DeFelippis, M. R.; Ward, M. D. Biophys. J. 2000, 78, 466.   DOI   ScienceOn
9 Jordan, C. E.; Frutos, A. G.; Thiel, A. J.; Corn, R. M. Anal. Chem. 1997, 69, 4939.   DOI   ScienceOn
10 Fulghum, J. E. J. Electron. Spectrosc. Relat. Phenom. 1999, 100, 331.   DOI   ScienceOn
11 Hagenhoff, B. Biosens. Bioelectron. 1995, 10, 885.   DOI   ScienceOn
12 Ostrowski, S. G.; Bell, C. T. V.; Winograd, N.; Ewing, A. G. Science 2004, 305, 71.   DOI   ScienceOn
13 Tourovskaia, A.; Barber, T.; Wickes, B. T.; Hirdes, D.; Grin B.; Castner, D. G.; Healy, K. E.; Folch, A. Langmuir 2003, 19, 4754.   DOI   ScienceOn
14 Belu, A. M.; Yang, Z.; Aslami, R.; Chilkoti, A. Anal. Chem. 2001, 73, 143.   DOI   ScienceOn
15 Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W.-G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V. Langmuir 2001, 17, 5440.   DOI   ScienceOn
16 Michel, R.; Lussi, J. W.; Csucs, G.; Reviakine, I.; Danuser, G.; Ketterer, B.; Hubbell, J. A.; Textor, M.; Spencer, N. D. Langmuir 2002, 18, 3281.   DOI   ScienceOn
17 Castner, D. G. Nature 2003, 422, 129.   DOI   ScienceOn
18 Winograd, N. Anal. Chem. 2005, 77, 142A.
19 Gillen, G.; Roberson, S. Rapid Comm. Mass Spectrom. 1998, 12, 1303.   DOI
20 Weibel, D.; Wong, S.; Lockyer, N.; Blenkinsopp, P.; Hill, R.; Vickerman, J. C. Anal. Chem. 2003, 75, 1754.   DOI   ScienceOn
21 Kollmer, F. Appl. Surf. Sci. 2004, 231-232, 153.   DOI   ScienceOn
22 Touboul. D.; Halgand, F.; Brunelle, A.; Kersting, R.; Tallarek, E.; Hangenhoff, B.; Laprévote, O. Anal. Chem. 2004, 76, 1550.   DOI   ScienceOn
23 Sjövall, P.; Lausmaa, J.; Johnsson, B. Anal. Chem. 2004, 76, 4271.   DOI   ScienceOn
24 Wagner, M. S.; Graham, D. J.; Ratner, B. D.; Castner, D. G. Surf. Sci. 2004, 570, 78.   DOI   ScienceOn
25 Wagner, M. S.; Castner, D. G. Langmuir 2001, 17, 4649.   DOI   ScienceOn
26 Smentkowski, V. S.; Keenan, M. R.; Ohlhausen, J. A.; Kotula, P. G. Anal. Chem. 2005, 77, 1530.   DOI   ScienceOn
27 Park, T. J.; Lee, K.-B.; Lee, S. J.; Park, J. P.; Lee, Z.-W.; Lee, S. Y.; Choi, I. S. J. Am. Chem. Soc. 2004, 126, 10512.   DOI   ScienceOn
28 Xia Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 551.
29 Park, J. P.; Lee, S. J.; Park, T. J.; Lee, K.-B.; Choi, I. S.; Lee, S. Y.; Kim, M.-G.; Chung, B. H. Biotechnol. Bioprocess Eng. 2004, 9, 137.   DOI   ScienceOn
30 Lee, Z.-W.; Lee, K.-B.; Hong, J.-H.; Kim, J.-H.; Choi, I.; Choi, I. S. Chem. Lett. 2005, 34, 648.   DOI   ScienceOn
31 Hyun, J.; Ma, H.; Banerjee, P.; Cole, J.; Gonsalves, K.; Chilkoti, A. Langmuir 2002, 18, 2975.   DOI   ScienceOn
32 Lahann, J.; Balcells, M.; Rodon, T.; Lee, J.; Choi, I. S.; Jensen, K. F.; Langer, R. Langmuir 2002, 18, 3632.   DOI   ScienceOn
33 Lee, K.-B.; Kim, D. J.; Lee, Z.-W.; Woo, S. I.; Choi, I. S. Langmuir 2004, 20, 2531.   DOI   ScienceOn